Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 327 Accesses

Abstract

“Free radicals” is the term commonly used for molecules or ions that contain an odd number of electrons. The unavoidable presence of (at least) one unpaired electron has an enormous impact on the chemical reactivity of free radicals. They react very fast with non-radical species by either abstraction of an electron (acting as an oxidizing agent), donation of an electron (acting as a reducing agent), or by attachment to the non-radical (Slater, Biochem J 222:1–5, 1984). The product formed in the latter case (commonly termed secondary radical) also contains an unpaired electron, and hence may react with another non-radical and propagate a chain reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When conducting blood tests the value measured is the amount of cholesterol in LDL and HDL (LDL-C and HDL-C, respectively), and so higher values are related to the cholesterol rich LDL (typically two to threefold more than for HDL), although on a molar basis the concentration of HDL is much higher (see Table 4.1, p. 50).

References

  1. Slater, T.F.: Free-radical mechanisms in tissue injury. Biochem. J. 222, 1–15 (1984)

    CAS  Google Scholar 

  2. Cadenas, E.: Basic mechanisms of antioxidant activity. BioFactors 6, 391–397 (1997)

    Article  CAS  Google Scholar 

  3. Finkel, T., Holbrook, N.J.: Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000)

    Article  CAS  Google Scholar 

  4. Fridovich, I.: Superoxide radical: an endogenous toxicant. Annu. Rev. Pharmacol. Toxicol. 23, 239–257 (1983)

    Article  CAS  Google Scholar 

  5. Griendling, K.K., Sorescu, D., Ushio-Fukai, M.: NAD(P)H oxidase : role in cardiovascular biology and disease. Circul. Res. 86, 494–501 (2000)

    Article  CAS  Google Scholar 

  6. Pagano, P.J., et al.: An NADPH oxidase superoxide-generating system in the rabbit aorta. Am. J. Physiol. 268, H2274–H2280 (1995)

    CAS  Google Scholar 

  7. Fridovich, I.: Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975)

    Article  CAS  Google Scholar 

  8. Chance, B., Sies, H., Boveris, A.: Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979)

    CAS  Google Scholar 

  9. Fleming, I., Busse, R.: Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am. J. Physiol. 284, R1–R12 (2003)

    CAS  Google Scholar 

  10. Vásquez-Vivar, J., et al.: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. USA 95, 9220–9225 (1998)

    Article  Google Scholar 

  11. Kelm, M., Dahmann, R., Wink, D., Feelisch, M.: The nitric oxide/superoxide assay. J. Biol. Chem. 272, 9922–9932 (1997)

    Article  CAS  Google Scholar 

  12. Pacher, P., Beckman, J.S., Liaudet, L.: Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007)

    Article  CAS  Google Scholar 

  13. Ducrocq, C., Blanchard, B.: Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell. Mol. Life Sci. 55, 1068–1077 (1999)

    Article  CAS  Google Scholar 

  14. Ross, R.: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809 (1993)

    Article  CAS  Google Scholar 

  15. Glass, C.K., Witztum, J.L.: Atherosclerosis: the road ahead. Cell 104, 503–516 (2001)

    Article  CAS  Google Scholar 

  16. Brown, M.S., Goldstein, J.L.: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997)

    Article  CAS  Google Scholar 

  17. Stocker, R., Keaney, J.F.: New insights on oxidative stress in the artery wall. J. Thromb. Haemost. 3, 1825–1834 (2005)

    Article  CAS  Google Scholar 

  18. Palinski, W., et al.: Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl. Acad. Sci. USA 86, 1372–1376 (1989)

    Article  CAS  Google Scholar 

  19. Nishi, K., et al.: Oxidized LDL in carotid plaques and plasma associates with plaque instability. Atert. Thromb. Vasc. Biol. 22, 1649–1654 (2002)

    Article  CAS  Google Scholar 

  20. Ehara, S., et al.: Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 103, 1955–1960 (2001)

    Article  CAS  Google Scholar 

  21. Aviram, M., Fuhrman, B.: LDL oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: role of prooxidants vs. antioxidants. Mol. Cell. Biochem. 188, 149–159 (1998)

    Article  CAS  Google Scholar 

  22. Leeuwenburgh, C., et al.: Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem. 272, 1433–1436 (1997)

    Article  CAS  Google Scholar 

  23. Kontush, A., Chapman, M.J.: Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 58, 342–374 (2006)

    Article  CAS  Google Scholar 

  24. Kontush, A., Chapman, M.J.: Antiatherogenic small, dense HDL—guardian angel of the arterial wall? Nat. Clin. Pract. Cardiovasc. Med. 3, 144–153 (2006)

    Article  CAS  Google Scholar 

  25. Aviram, M., Rosenblat, M.: Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med. 37, 1304–1316 (2004)

    Article  CAS  Google Scholar 

  26. Nakajima, T., et al.: Characterization of the epitopes specific for the monoclonal antibody 9F5-3a and quantification of oxidized HDL in human plasma. Ann. Clin. Biochem. 41, 309–315 (2004)

    Article  CAS  Google Scholar 

  27. Zheng, L., et al.: Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest. 114, 529–541 (2004)

    CAS  Google Scholar 

  28. Francis, G.A.: High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1483, 217–235 (2000)

    Article  CAS  Google Scholar 

  29. Grundy, S.M., et al.: Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation 110, 227–239 (2004)

    Article  Google Scholar 

  30. Lenfant, C.: Clinical research to clinical practice—lost in translation? N. Engl. J. Med. 349, 868–874 (2003)

    Article  Google Scholar 

  31. Steinberg, D., Glass, C.K., Witztum, J.L.: Evidence mandating earlier and more aggressive treatment of hypercholesterolemia. Circulation 118, 672–677 (2008)

    Article  Google Scholar 

  32. Waters, D.D., et al.: Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J. Am. Coll. Cardiol. 57, 1535–1545 (2011)

    Article  CAS  Google Scholar 

  33. Preiss, D., et al.: Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy. JAMA J. Am. Med. Assoc. 305, 2556–2564 (2011)

    Article  CAS  Google Scholar 

  34. Rietjens, I.M.C.M., et al.: The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 11, 321–333 (2002)

    Article  CAS  Google Scholar 

  35. Fuhrman, B., Aviram, M.: Anti-atherogenicity of nutritional antioxidants. IDrugs 4, 82–92 (2001)

    CAS  Google Scholar 

  36. Steinhubl, S.R.: Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, 14D–19D (2008)

    Article  CAS  Google Scholar 

  37. Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G., Gluud, C.: Mortality in randomized trials of antioxidant supplements for primary and secondary prevention—Systematic review and meta-analysis. JAMA, J. Am. Med. Assoc. 297, 842–857 (2007)

    Google Scholar 

  38. Gross, Z., Galili, N., Saltsman, I.: The first direct synthesis of corroles from pyrrole. Angew. Chem., Int. Ed. 38, 1427–1429 (1999)

    Google Scholar 

  39. Mahammed, A., Goldberg, I., Gross, Z.: Highly selective chlorosulfonation of tris(pentafluorophenyl)corrole as a synthetic tool for the preparation of amphiphilic corroles and metal complexes of planar chirality. Org. Lett. 3, 3443–3446 (2001)

    Article  CAS  Google Scholar 

  40. Saltsman, I., et al.: Selective substitution of corroles: nitration, hydroformylation, and chlorosulfonation. J. Am. Chem. Soc. 124, 7411–7420 (2002)

    Article  CAS  Google Scholar 

  41. Haber, A., Aviram, M., Gross, Z.: Protecting the beneficial functionality of lipoproteins by 1-Fe, a corrole-based catalytic antioxidant. Chem. Sci. 2, 295–302 (2011)

    Article  CAS  Google Scholar 

  42. Kanamori, A., Catrinescu, M.M., Mahammed, A., Gross, Z., Levin, L.A.: Neuroprotection against superoxide anion radical by metallocorroles in cellular and murine models of optic neuropathy. J. Neurochem. 114, 488–498 (2010)

    Article  CAS  Google Scholar 

  43. Kupershmidt, L., et al.: Metallocorroles as cytoprotective agents against oxidative and nitrative stress in cellular models of neurodegeneration. J. Neurochem. 113, 363–373 (2010)

    Article  CAS  Google Scholar 

  44. Okun, Z., et al.: Manganese corroles prevent intracellular nitration and subsequent death of insulin-producing cells. ACS Chem. Biol. 4, 910–914 (2009)

    Article  CAS  Google Scholar 

  45. Haber, A., et al.: Amphiphilic/bipolar metallocorroles that catalyze the decomposition of reactive oxygen and nitrogen species, rescue lipoproteins from oxidative damage, and attenuate atherosclerosis in mice. Angew. Chem. Int. Ed. 47, 7896–7900 (2008)

    Google Scholar 

  46. Agadjanian, H., et al.: Tumor detection and elimination by a targeted gallium corrole. Proc. Natl. Acad. Sci. USA 106, 6105–6110 (2009)

    Article  CAS  Google Scholar 

  47. Agadjanian, H., et al.: Specific delivery of corroles to cells via noncovalent conjugates with viral proteins. Pharm. Res. 23, 367–377 (2006)

    Article  CAS  Google Scholar 

  48. Aviv, I., Gross, Z.: Corrole-based applications. Chem. commun. (20), 1987–1999 (2007)

    Google Scholar 

  49. Gross, Z., Gray, H.B.: How do corroles stabilize high valent metals? Comments Inorg. Chem. 27, 61–72 (2006)

    Article  CAS  Google Scholar 

  50. Simonson, S.G., et al.: Aerosolized manganese SOD decreases hyperoxic pulmonary injury in primates. I. Physiology and biochemistry. J. Appl. Physiol. 83, 550–558 (1997)

    Google Scholar 

  51. Salvemini, D., Wang, Z.-Q., Stern, M.K., Currie, M.G., Misko, T.P.: Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc. Natl. Acad. Sci. USA 95, 2659–2663 (1998)

    Article  CAS  Google Scholar 

  52. Batinić-Haberle, I., Rebouças, J.S., Spasojević, I.: Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal. 13, 877–918 (2010)

    Article  Google Scholar 

  53. Eckshtain, M., et al.: Superoxide dismutase activity of corrole metal complexes. Dalton Trans. (38), 7879–7882 (2009)

    Google Scholar 

  54. Mahammed, A., Gross, Z.: Highly efficient catalase activity of metallocorroles. Chem. Comm. 46, 7040–7042 (2010)

    Article  CAS  Google Scholar 

  55. Mahammed, A., Gross, Z.: Iron and manganese corroles are potent catalysts for the decomposition of peroxynitrite. Angew. Chem. Int. Ed. 45, 6544–6547 (2006)

    Article  CAS  Google Scholar 

  56. Lee, J., Hunt, J.A., Groves, J.T.: Manganese porphyrins as redox-coupled peroxynitrite reductases. J. Am. Chem. Soc. 120, 6053–6061 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Haber .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haber, A. (2012). Introduction. In: Metallocorroles for Attenuation of Atherosclerosis. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30328-9_1

Download citation

Publish with us

Policies and ethics