Molecules on the Au(111) Surface

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The previous chapter provided some evidence that calculations performed in the gas phase can be useful if the molecule-surface interaction has a relatively small corrugation across the surface. However, the presence of the surface can be important in giving a preferential growth direction or stabilising structures which are not the most stable in the gas phase. More complex structures may be possible, for which the surface may play some role, e.g. domain walls to relieve the strain between different domains. Therefore, the calculation of the binding energies of the molecules with the surface and the energy barriers for their diffusion are of crucial importance. In this chapter, we shall treat accurately these issues using a different kind of approach in order to have a complete characterisation of the phenomenon. In the first part of the chapter, we shall present our results regarding the adsorption and diffusion of molecules on the Au(111) surface using the standard DFT approach. Later on we shall compare these results with the ones obtained with the vdW-DF method which accounts for dispersion interaction. We shall present the results in the same order as in the previous chapter starting from the melamine and then moving towards the more complicated PTCDA, PTCDI, NTCDI and NTCDA molecules.

Keywords

Adsorption Energy Lattice Vector Gold Surface Dispersion Interaction Preferential Adsorption Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kelly REA, Xu W, Lukas M, Otero R, Mura M, Lee YJ, Lægsgaard E, Stensgaard I, Kantorovich LN, Besenbacher F (2008) An investigation into the interactions between self-assembled adenine molecules and the au(111) surface. Small 4:1494CrossRefGoogle Scholar
  2. 2.
    Saywell A, Magnano G, Satterley CJ, Pedigão LMA, Champness PH, Beton NR, O’Shea JN (2008) J Phys Chem C 112(20):7706–7709Google Scholar
  3. 3.
    Perdigão LMA, Champness NR, Beton PH (2006) Chem Commun 5:538CrossRefGoogle Scholar
  4. 4.
    Perdigão LMA, Fontes GN, Rogers BL, Oxtoby NS, Goretzki G, Champness NR, Beton PH (2007) Phys Rev B 76:245402CrossRefGoogle Scholar
  5. 5.
    Perdigão LMA, Perkins EW, Ma J, Staniec PA, Rogers BL, Champness NR, Beton PH (2006) J Phys Chem B 110:12539CrossRefGoogle Scholar
  6. 6.
    Staniec PA, Perdigão LMA, Rogers BL, Champness NR, Beton PH (2007) J Phys Chem C 111:886CrossRefGoogle Scholar
  7. 7.
    Zhang H, Xie Z, Long L, Zhong H, Zhao W, Mao B, Xu X, Zhao W (2008) J Phys Chem C 112:4209Google Scholar
  8. 8.
    Xu W, Dong M, Gersen H, Rauls E, Vázquez-Campos S, Crego-Calama M, Reinhoudt DN, Stensgaard I, Laegsgaard E, Linderoth TR, Besenbacher F (2007) Small 3:854CrossRefGoogle Scholar
  9. 9.
    Piana S, Bilic A (2006) J Phys Chem B 110:23467CrossRefGoogle Scholar
  10. 10.
    Silly F, Shaw AQ, Castell MR, Briggs GAD, Mura M, Martsinovich N, Kantorovich LN (2008) J Phys Chem C 112:11476Google Scholar
  11. 11.
    Mura M, Martsinovich N, Kantorovich LN (2008) Nanotechnology 19:465704CrossRefGoogle Scholar
  12. 12.
    Mura M, Gulans A, Thonhauser T, Kantorovich L (2010) Role of van der waals interaction in forming molecule-metal junctions: flat organic molecules on the au(111) surface. Phys Chem Chem Phys 12(8):4759–4767Google Scholar
  13. 13.
    Henze SKM, Bauer O, Lee T-LT-L, Sokolowski M, Tautz FS (2008) Surf. Sci. 601:1566–1573CrossRefGoogle Scholar
  14. 14.
    Dion M, Rydberg H, Schroeder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401CrossRefGoogle Scholar
  15. 15.
    Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Phys Rev B 76:125112CrossRefGoogle Scholar
  16. 16.
    Cooper VR, Thonhauser T, Puzder A, Schroeder E, Lundqvist BI, Langreth DC (2008) J Am Chem Soc 130:1304CrossRefGoogle Scholar
  17. 17.
    Kantorovich LN, Trevethan T, Polesel-Maris J, Foster A. Self consistent image force interaction + virtual AFM machine. http://www.cmmp.ucl.ac.uk/~lev/codes/SciFi/manual_3_51/index.html
  18. 18.
    Ziroff J, Gold P, Bendounan A, Forster F, Reinert F (2009) Surf Sci 603:354–358Google Scholar
  19. 19.
    Perdew JP, Burke K, Ernzerhof M (1998) Phys Rev Lett 80:891CrossRefGoogle Scholar
  20. 20.
    Gulans A, Puska MJ, Nienminen RN (2009) Phys Rev B 79:201105Google Scholar
  21. 21.
    Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) Phys Condens Matter 14:2745CrossRefGoogle Scholar
  22. 22.
    Otero R, Lukas M, Kelly REA, Xu W, Lægsgaard E, Stensgaard I, Kantorovich LN, Besenbacher F (2008) Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 319:312–315Google Scholar
  23. 23.
    Kelly REA, Lukas M, Kantorovich LN, Otero R, Xu W, Mura M, Laesgaard E, Stensgaard I, Besenbacher F (2008) Understanding disorder of the dna base cytosine on the au(111) surface. J Chem Phys 129:184707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of Central Lancashire PrestonLancashireUK

Personalised recommendations