Hydrogen-Bonding Templates in the Gas Phase

  • Manuela Mura
Part of the Springer Theses book series (Springer Theses)


In this chapter we shall consider all possible gas-phase structures which could be formed by various molecules on the Au(111) surface. To understand these findings, we followed a systematic theoretical approach in constructing 1D and 2D planar periodic molecular assemblies. Our method is based on predicting all possible structures in the gas phase by first identifying and then utilising all connections between the molecules. All possible monolayers based on dimers or more complicated unit cells could be obtained using this method. This will be done firstly in the gas phase, that is justified if the potential energy surface (PES) of the “molecules + surface” system is flat. This implies that the molecules diffuse easily on the surface and the assembly is driven mainly by molecule-molecule interaction.


Lattice Vector Stabilisation Energy Dime Energy Double Hydrogen Bond Systematic Theoretical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Nature 424:1029CrossRefGoogle Scholar
  2. 2.
    Knaggs EI, Lonsdale K, Wood RG, Williams G (1940) R. Soc. Lond. Proc. Series A 177:140–147Google Scholar
  3. 3.
    Perdigão LMA, Perkins EW, Ma J, Staniec PA, Rogers BL, Champness NR, Beton PH (2006) J Phys Chem B 110:12539CrossRefGoogle Scholar
  4. 4.
    Staniec PA, Perdigão LMA, Rogers BL, Champness NR, Beton PH (2007) J Phys Chem C 111:886CrossRefGoogle Scholar
  5. 5.
    Perdigão LMA, Champness NR, Beton PH (2006) Chem Commun 5:538CrossRefGoogle Scholar
  6. 6.
    Ranganatha A, Pedireddi VR, Rao CNR (1999) J Am Chem Soc 121:1752CrossRefGoogle Scholar
  7. 7.
    Zhang H, Xie Z, Long L, Zhong H, Zhao W, Mao B, Xu X, Zhao W (2008) J Phys Chem C 112:4209CrossRefGoogle Scholar
  8. 8.
    Jurecka P, Sponer J, Cemý J, Hobza P (2009) Phys Rev B 79:201105CrossRefGoogle Scholar
  9. 9.
    Goll E, Leininger T, Manby FR, Mitrushchenkov A, Werner H-J, Stoll H (2008) Phys Chem Chem Phys 10:3353–3357CrossRefGoogle Scholar
  10. 10.
    Mura M, Martsinovich N, Kantorovich LN (2008) Nanotechnology 19:465704CrossRefGoogle Scholar
  11. 11.
    Silly F, Shaw AQ, Castell MR, Briggs GAD, Mura M, Martsinovich N, Kantorovich LN (2008) J Phys Chem C 112:11476Google Scholar
  12. 12.
    Otero R, Shőck M, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Angew Chem 44:2270CrossRefGoogle Scholar
  13. 13.
    Kelly REA, Lee YJ, Kantorovich LN (2005) J Phys Chem B 109:22045CrossRefGoogle Scholar
  14. 14.
    Kelly REA, Kantorovich LN (2006) J Mater Chem 16:1894CrossRefGoogle Scholar
  15. 15.
    Kelly REA, Lee YJ, Kantorovich LN (2006) J Phys Chem B 110:2249CrossRefGoogle Scholar
  16. 16.
    Mura M, Sun X, Jonkman HT, Silly F, Briggs GAD, Castell MR, Kantorovich L (2010) Experimental and theoretical analysis of h-bonded supramolecular assemblies of ptcda molecules on the au(111) surface. Phys Rev B 81(12):195412–195422Google Scholar
  17. 17.
    Swarbrick JC, Ma J, Theobald JA, Oxtoby NS, O’Shea JN, Champness NR, Beton PH (2005) J Phys Chem B 109:12167CrossRefGoogle Scholar
  18. 18.
    Gabriel M, Stöhr M, Möller R (2002) Appl Phys A 74:303Google Scholar
  19. 19.
    Chinzhov I, Kahn A, Scoles G (2000) J Crys Growth 208:449CrossRefGoogle Scholar
  20. 20.
    Mannsfeld S, Toerker M, Schmitz-Hubsch T, Sellam F, Fritz T, Leo K (2001) Org Electron 2:121CrossRefGoogle Scholar
  21. 21.
    Kröger J, Jensen H, Berdt R, Rurali R, Lorente N (2007) Molecular orbital shift of perylenetetracaboxylic-dianhydride on gold. Chem Phys Lett 438:249–253CrossRefGoogle Scholar
  22. 22.
    Wanger Th, Bannani A, Bobisch C, Karacuban H, Moller R (2007) Condens Matter 19:056009CrossRefGoogle Scholar
  23. 23.
    Silly F, Weber UK, Shaw AQ, Burlakov VM, Castell MR, Briggs GAD, Pettifor DG (2008) Phys Rev B 77:201408CrossRefGoogle Scholar
  24. 24.
    Glockler K, Seidel C, Sokolowski M, Umbach E, Bohringer M, Berndt R, Schneider W-D (1998) Surf Sci 405:1–20CrossRefGoogle Scholar
  25. 25.
    Kunstmann T, Schlarb A, Fendrich M, Wangner Th, Moller R, Hoffmann R (2005) Phys Rev B 71:121403CrossRefGoogle Scholar
  26. 26.
    Kilian L, Hauschild A, Temiroc R, Soubatch S, Scholl A, Reinert F, Lee T-L, Tautz FS, Sokolowski M, Ulbach E (2008) Phys Rev Lett 100:136103CrossRefGoogle Scholar
  27. 27.
    Nicoara N, Romani E, Gomez-Rodriguez JM, Martin-Gago J, Mendez J (2006) Org Electron 7:287CrossRefGoogle Scholar
  28. 28.
    Fendrich M, Kunstmann T, Paulkowski D, Möller R (2007) Nanotechnology 18:084004CrossRefGoogle Scholar
  29. 29.
    Lauffer P, Emtsev KV, Graupner R, Seyller T, Ley L (2008) Phys Stat Sol B 245:2064Google Scholar
  30. 30.
    Mura M, Gulans A, Thonhauser T, Kantorovich L (2010) Role of van der waals interaction in forming molecule-metal junctions: flat organic molecules on the au(111) surface. Phys Chem Chem Phys 12(18):4759–4767Google Scholar
  31. 31.
    Perdigao LMA, Saywell GN, Fontes A, Staniec PA, Goretzki G, Phillips AG, Champness NR, Beton PH (2008) Chemistry (Eur J) 14:7600Google Scholar
  32. 32.
    Mura M, Silly F, Briggs GAD, Castell MR, Kantorovich L (2009) H-bonding supramolecular assemblies of ptcdi molecules on the au(111) surface. J Phys Chem C 113:21840–21848CrossRefGoogle Scholar
  33. 33.
    Silly F, Shaw AQ, Briggs GAD (2008) Chem. Comm. 16:.Google Scholar
  34. 34.
    Cañas ME, Xiao W, Wasserfallen D, Müller K, Brune H, Barth JV (2007) Angew Chem Int Ed 46:1814–1818CrossRefGoogle Scholar
  35. 35.
    Gulans A, Puska MJ, Nienminen RN (2009) Phys Rev B 79(20):201105–201108Google Scholar
  36. 36.
    Dion M, Rydberg H, Schroeder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401CrossRefGoogle Scholar
  37. 37.
    Swarbrick JC, Rogers BL, Champness NR, Beton PH (2006) J Phys Chem B 110:6110CrossRefGoogle Scholar
  38. 38.
    Saywell A, Magnano G, Satterley CJ, Pedigão LMA, Champness NR, Beton PH, O’Shea JN (2008) J Phys Chem C 112(20):7706–7709Google Scholar
  39. 39.
    Cooper VR, Thonhauser T, Puzder A, Schroeder E, Lundqvist BI, Langreth DC (2008) J Am Chem Soc 130:1304CrossRefGoogle Scholar
  40. 40.
    Kelly REA, Kantorovich LN (2005) Hexagonal adenine networks constructed from their homo-pairings. Surf Sci 589:139–152CrossRefGoogle Scholar
  41. 41.
    Perdigão LMA, Staniec PA, Champness NR, Kelly REA, Kantorovich LN, Beton PH (2006) Adenine monolayers on ag-terminated si(111). Phys Rev B 73:195423CrossRefGoogle Scholar
  42. 42.
    Kelly REA, Xu W, Lukas M, Otero R, Mura M, Lee YJ, Lægsgaard E, Stensgaard I, Kantorovich LN, Besenbacher F (2008) An investigation into the interactions between self-assembled adenine molecules and the au(111) surface. Small 4:1494CrossRefGoogle Scholar
  43. 43.
    Kelly REA, Lukas M, Kantorovich LN, Otero R, Xu W, Mura M, Laesgaard E, Stensgaard I, Besenbacher F (2008) Understanding disorder of the dna base cytosine on the au(111) surface. J Chem Phys 129:184707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of Central Lancashire PrestonLancashireUK

Personalised recommendations