Skip to main content

Theoretical Methods

  • Chapter
  • First Online:
  • 606 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Many of the properties of the solid state and chemical systems can be determined solving the Schrödinger equation for a given system. However, states of most of electrons and nuclei have to be accounted for. The solution to many electrons can be obtained by the Hartree Fock (HF) method, using the wavefunction of the electrons, or density functional theory (DFT) based methods, using the density function of the electrons instead of solving the Schrödinger equation. The former method is a base for other approaches used in the quantum chemistry community, whereas the latter method has been largely used in the physics community to study the electronic structure of solids. However, over the last 20 years due to the increased efficiency of computers and the accuracy of the DFT functionals, the number of systems studied using DFT method has increased. As a result of this expansion, systems typically studied using quantum chemistry methods, such as organic and inorganic molecules, are being increasingly often studied with DFT methods because of much better efficiency and high quality which is close to that of the quantum chemistry (QC) methods. Another way to address many body problem is the classical molecular dynamics that is used to derive physical properties of the system from empirical potentials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    At a given energy E the surface (s) and the tip (t) could be described by a certain number \(N_{s}(E)\) or \(N_{t}(E)\) of independent conductors that are defined as channels.

References

  1. Kantorovich LN (2004) Quantum theory of the solid state: an introduction. Fundamental theories of physics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Hohenberg P, Kohn W (1964) Phys Rev Lett 136:864B

    Google Scholar 

  3. Kohn W, Sham LJ (1965) Phys Rev Lett 140:1133A

    Google Scholar 

  4. Sanchez-Portal D, Ordejon P, Artacho E, Soler JM (1997) Density functional method for very large systems with lcao bas is sets. Int J Quantum Chem 65:453

    Article  Google Scholar 

  5. Kleinman L (1980) Phys Rev B 21:2630

    Article  Google Scholar 

  6. Bachelet GB, Schluter M (1982) Phys Rev B 25:2103

    Article  CAS  Google Scholar 

  7. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  8. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425

    Article  CAS  Google Scholar 

  9. Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26:1738

    Article  CAS  Google Scholar 

  10. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  11. Kelly REA, Lee YJ, Kantorovich LN (2005) J Phys Chem B 109:22045

    Article  CAS  Google Scholar 

  12. Kelly REA, Kantorovich LN (2006) J Mater Chem 16:1894

    Article  CAS  Google Scholar 

  13. Kelly REA, Lee YJ, Kantorovich LN (2005) J Phys Chem B 109:11933

    Article  CAS  Google Scholar 

  14. Kelly REA, Lee YJ, Kantorovich LN (2006) J Phys Chem B 110:2249

    Article  CAS  Google Scholar 

  15. Sponer J, Leszczynski J, Hobza P J Phys Chem

    Google Scholar 

  16. Boys F, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  17. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  18. von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D Phys Rev Lett

    Google Scholar 

  19. Dion M, Rydberg H, Schroeder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  20. Langreth DC, Dion M, Rydberg H, Schroder E, Hyldgaard P, Lundqvist BI (2005) J Quantum Chem 101:599

    Article  CAS  Google Scholar 

  21. Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Phys Rev B 76:125112

    Article  Google Scholar 

  22. Cooper VR, Thonhauser T, Puzder A, Schroeder E, Lundqvist BI, Langreth DC (2008) J Am Chem Soc 130:1304

    Article  CAS  Google Scholar 

  23. Langreth DC, Lundqvist BI, Chakarova-Draxl SD, Cooper VR, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong LZ, Li S, Moses PG, Murray E, Puzder A, Rydberg H, Schroder E, Rydberg T, Thonhauser H (2009) Cond Matter 21:084203

    Article  CAS  Google Scholar 

  24. Gulans A, Puska MJ, Nienminen RN Phys Rev B

    Google Scholar 

  25. Roman-Perez G, Soler JM Phys Rev Lett

    Google Scholar 

  26. Mura M, Gulans A, Thonhauser T, Kantorovich L (2009) Role of van der waals interaction in forming molecule-metal junctions: flat organic molecules on the au(111) surface. Phys Chem Chem Phys (submitted)

    Google Scholar 

  27. Bardeen J (1961) Phys Rev Lett 6:57

    Article  CAS  Google Scholar 

  28. Tersoff J, Hamann DR (1985) Stm Theory Phys Rev B 31:805

    Article  CAS  Google Scholar 

  29. Cerdá J, Van Hove MA, Sautet P, Salmeron M (1997) Efficient method for the simulation of stm images. i. generalized green-function formalism. Phys Rev B 56(24):15885–15899

    Article  Google Scholar 

  30. Cerdá J, Van Hove MA, Sautet P, Salmeron M (1997) Efficient method for the simulation of stm images. ii. application to clean rh(111) and rh(111)+c(4x2)-2s. Phys Rev B 56(24):15900–15918

    Article  Google Scholar 

  31. Büttiker M, Imry Y, Landauer R, Pinhas S (May 1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207–6215

    Article  Google Scholar 

  32. Kantorovich LN, Trevethan T, Polesel-Maris J, Foster A Self consistent image dorce interaction + virtual AFM machine

    Google Scholar 

  33. Piana S, Bilic A (2006) J Phys Chem B 110:23467

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Mura .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mura, M. (2012). Theoretical Methods. In: Self-Assembly of Flat Organic Molecules on Metal Surfaces. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30325-8_2

Download citation

Publish with us

Policies and ethics