# Boundary Element Method for Linear Elasticity with Conservative Body Forces

• Heiko Andrä
• Richards Grzhibovskis
• Sergej Rjasanow
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 66)

## Abstract

A boundary integral formulation for a mixed boundary value problem in linear elastostatics with a conservative right hand side is considered. A meshless interpolant of the scalar potential of the volume force density is constructed by means of radial basis functions. An exact particular solution to the Lamé system with the gradient of this interpolant as the right hand side is found. Thus, the need of approximating the Newton potential is eliminated. The procedure is illustrated on numerical examples.

## Keywords

Boundary Value Problem Radial Basis Function Body Force Boundary Element Method Linear Elasticity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Bambach, M., Grzhibovskis, R., Hirt, G., Rjasanow, S.: Adaptive cross approximation for surface reconstruction based on radial basis functions. J. Eng. Math. 62, 149–160 (2008)
2. 2.
Ahmed, S., Banerjee, P.: Free vibration analysis of bem using particular integrals. J. Eng. Mech. 112, 682–695 (1986)
3. 3.
Barber, J.: Body forces. In: Elasticity, Solid Mechanics and Its Applications, vol. 172, pp. 91–108. Springer, Netherlands (2010)Google Scholar
4. 4.
Beatson, R., Newsam, G.: Fast evaluation of radial basis functions. I. Comput. Math. Appl. 24(12), 7–19 (1992)
5. 5.
Beatson, R., Cherrie, J., Mouat, C.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math. 11(2-3), 253–270 (1999)
6. 6.
Beatson, R., Newsam, G.: Fast evaluation of radial basis functions: moment-based methods. SIAM J. Sci. Comput. 19(5), 1428–1449 (1998)
7. 7.
Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)
8. 8.
Bebendorf, M., Grzhibovskis, R.: Accelerating Galerkin BEM for Linear Elasticity using Adaptive Cross Approximation. Math. Meth. Appl. Sci. 29, 1721–1747 (2006)
9. 9.
Bebendorf, M., Rjasanow, S.: Adaptive Low-Rank Approximation of Collocation Matrices. Computing 70, 1–24 (2003)
10. 10.
Brebbia, C., Nowak, A.: Treatment of domain integrals by using the dual and multiple reciprocity methods. In: Discretization methods in structural mechanics (Vienna, 1989), pp. 13–28. Springer, Berlin (1990)
11. 11.
Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)Google Scholar
12. 12.
Chen, C., Brebbia, C., Power, H.: Dual reciprocity method using compactly supported radial basis functions. Comm. Numer. Meth. Engrg. 15(2), 137–150 (1999)
13. 13.
Ciarlet, P.: Mathematical elasticity, vol. 1: Three-dimensional elasticity. North-Holland (1988)Google Scholar
14. 14.
Cruse, T.: Boundary integral equation method for three dimension. Tech. rep., AFOSR-TR-75 0813 (1975)Google Scholar
15. 15.
Danson, D.: A boundary element formulation of problems in linear isotropic elasticity with body forces. In: Brebbia, C.A. (ed.) Boundary Element Methods. Springer, Berlin (1981)Google Scholar
16. 16.
Gipson, G.: Boundary Element Fundamentals — Basic Concepts and Recent Developments in the Poisson Equation. Computational Mechanics Publication, Southampton (1987)Google Scholar
17. 17.
Golberg, M.: Recent developments in the numerical evaluation of particular solutions in the boundary element method. Appl. Math. Comput. 75(1), 91–101 (1996)
18. 18.
Golberg, M., Chen, C.: Discrete projection methods for integral equations. Computational Mechanics Publications, Southampton (1997)Google Scholar
19. 19.
Golberg, M.A., Chen, C.S., Bowman, H., Power, H.: Some comments on the use of radial basis functions in the dual reciprocity method. Comput. Mech. 22(1), 61–69 (1998)
20. 20.
Hand, L., Finch, J.: Analytical Mechanics. Cambridge University Press (1998)Google Scholar
21. 21.
Henry, D., Banerjee, P.: A new boundary element formulation for two- and three-dimensional thermoelasticity using particular integrals. Int. J. Numer. Meth. Engrg. 26(9), 2061–2077 (1988)
22. 22.
Hsiao, S., Mammoli, A., Ingber, M.: The evaluation of domain integrals in complex multiply-connected three-dimensional geometries for boundary element methods. Comput. Mech. 32, 226–233 (2003)
23. 23.
Ingber, M., Mammoli, A., Brown, M.: A comparison of domain integral evaluation techniques for boundary element methods. Int. J. Numer. Meth. Engrg. 52(4), 417–432 (2001)
24. 24.
Ivanov, E., Andrä, H., Kudryavtsev, A.: Domain decomposition for automatic parallel generation of tetrahedral meshes. CMAM 6, 178–193 (2006)
25. 25.
Jumarhon, B., Amini, S.: Towards a convergence analysis for the dual reciprocity method. In: Boundary Elements, XXI, Oxford. Int. Ser. Adv. Bound. Elem., vol. 6, pp. 583–592. WIT Press, Southampton (1999)Google Scholar
26. 26.
Light, W., Wayne, H.: On power functions and error estimates for radial basis function interpolation. J. Approx. Theory 92(2), 245–266 (1998)
27. 27.
Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Meth. Appl. Mech. Engrg. 157(12), 69–94 (1998)
28. 28.
Karachik, V., Antropova, N.: On the solution of the inhomogeneous polyharmonic equation and the inhomogeneous Helmholtz equation. Diff. Eqns. 46(3), 387–399 (2010)
29. 29.
Kurz, S., Rain, O., Rjasanow, S.: The Adaptive Cross Approximation technique for the 3D boundary element method. IEEE Trans. Magn. 38(2), 421–424 (2002)
30. 30.
Nardini, D., Brebbia, C.: A new approach to free vibration analysis using boundary elements. In: Brebbia, C.A. (ed.) Boundary Element Methods in Engineering. Springer, Berlin (1982)Google Scholar
31. 31.
Neves, A., Brebbia, C.: The multiple reciprocity boundary element method in elasticity: A new approach for transforming domain integrals to the boundary. Int. J. Numer. Meth. Engrg. 31(4), 709–727 (1991)
32. 32.
Nowak, A., Brebbia, C.: The multiple reciprocity method: A new approach for transforming BEM domain integrals to the boundary. Engng. Anal. 6(3), 164–167 (1989)Google Scholar
33. 33.
Of, G., Steinbach, O., Urthaler, P.: Fast evaluation of volume potentials in boundary element methods. SIAM J. Sci. Comput. 32(2), 585–602 (2010)
34. 34.
Partridge, P., Brebbia, C.: Computer implementation of the BEM dual reciprocity method for the solution of general field equations. Comm. Appl. Numer. Meth. 6(2), 83–92 (1990)
35. 35.
Partridge, P., Brebbia, C.: The dual reciprocity method. In: Advanced formulations in boundary element methods. Internat. Ser. Comput. Engrg., Comput. Mech., Southampton, pp. 31–75 (1993)Google Scholar
36. 36.
Partridge, P., Brebbia, C., Wrobel, L.: The Dual Reciprocity Boundary Element Method. Elsevier Apllied Science, London (1992)
37. 37.
Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer Series in Mathematical and Analytical Technology with Applications to Engineering, vol. 12. Springer, New York (2007)
38. 38.
Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68(225), 201–216 (1999)
39. 39.
Sirtori, S., Maier, G., Novati, G., Miccoli, S.: A Galerkin symmetric boundary-element method in elasticity - Formulation and implementation. Int. J. Numer. Meth. Engrg. 35(2), 255–282 (1992)
40. 40.
Steinbach, O.: Numerical approximation methods for elliptic boundary value problems. Springer, New York (2008)
41. 41.
Tang, W.: Transforming domain into boundary integrals in BEM: a generalized approach. Lecture Notes in Engineering. Springer (1988)Google Scholar
42. 42.
Wendland, H.: Optimal approximation orders in L p for radial basis functions. East. J. Approx. 1, 87–102 (2000)
43. 43.
Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (2005)Google Scholar

## Authors and Affiliations

• Heiko Andrä
• 1
• Richards Grzhibovskis
• 2
• Sergej Rjasanow
• 2
1. 1.Fraunhofer ITWMKaiserslauternGermany
2. 2.Institut für Angewandte MathematikUniversität des SaarlandesSaarbrückenGermany