Non-sequential Optical Field Tracing

Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 66)

Abstract

Optical field tracing methods generalize ray tracing methods by considering harmonic fields instead of ray bundles. This allows the smooth combination of different modeling techniques in different subdomains of the system. Based on tearing and interconnecting ideas, the paper introduces the basic concepts of non-sequential field tracing and derives the corresponding operator equations and a solution formula for the simulation task. The evaluation requires the solution of local Maxwell problems (tearing) and the continuity of the solution across boundaries is achieved along with the convergence of the iterative procedure (interconnecting). The number of local problems to be solved is optimized by a newly introduced light path tree algorithm. Finally some examples for the selection of local Maxwell solvers and numerical results are presented.

Keywords

Boundary Element Method Domain Decomposition Method Neumann Series Versus Source Optical Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brigham, E.O.: The fast Fourier transform. Prentice-Hall, Englewood Cliffs (1974)MATHGoogle Scholar
  2. 2.
    Goodmann, J.W.: Introduction to Fourier optics. McGraw-Hill, New York (1968)Google Scholar
  3. 3.
    Langer, U., Steinbach, O.: Coupled boundary and finite element tearing and interconnecting methods. In: Kornhuber, R., Hoppe, R., Periaux, J., Pironneau, O., Widlund, O.B., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XV. Lecture Notes in Computational Sciences and Engineering, vol. 40, pp. 83–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Langer, U., Steinbach, O.: Coupled finite and boundary element domain decomposition methods. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis. Mathematical Aspects and Applications. LNACM, vol. 29, pp. 61–95. Springer, Berlin (2007)CrossRefGoogle Scholar
  5. 5.
    Mandel, L., Wolf, E.: Optical coherence and quantum optics. Cambridge University Press, Cambridge (1995)Google Scholar
  6. 6.
    LightTrans GmbH: VirtualLabTM - your optical modeling laboratory (2000-2012), http://www.lighttrans.com
  7. 7.
    Meyer, C.D.: Matrix analysis and applied linear algebra. SIAM (2001)Google Scholar
  8. 8.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Tervo, J., Turunen, J., Wyrowski, F.: The Light Cube. In: 5th EOS Topical Meeting on Advanced Imaging Techniques, vol. 3037, European Optical Society (2010)Google Scholar
  10. 10.
    Turunen, J.: Diffraction theory of microrelief gratings. In: Herzig, H.P. (ed.) Micro-optics Elements, Systems and Applications, pp. 31–52. Taylor & Francis, London (1997)Google Scholar
  11. 11.
    Wyrowski, F., Hellmann, C., Krieg, R., Schweitzer, H.: Modeling the propagation of ultrashort pulses through optical systems. In: Neev, A., Nolte, J., Trebina, R.P. (eds.) Proc. SPIE, Heisterkamp, San Francisco, vol. 7589 (2010)Google Scholar
  12. 12.
    Wyrowski, F., Kuhn, M.: Introduction to field tracing. J. Modern Optics 58(5-6), 449–466 (2011)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Kuhn
    • 1
  • Frank Wyrowski
    • 2
  • Christian Hellmann
    • 3
  1. 1.LightTrans VirtualLab UGJenaGermany
  2. 2.Institut für Angewandte PhysikFriedrich–Schiller–Universität JenaJenaGermany
  3. 3.LightTrans GmbHJenaGermany

Personalised recommendations