Advertisement

A Brief History of the Parallel Dawn in Karl-Marx-Stadt/Chemnitz

  • Gundolf Haase
  • Matthias Pester
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 66)

Abstract

The paper recalls the period 1988-1993 when the research on parallel algorithms and their implementation started in Karl-Marx-Stadt (renamed to Chemnitz in 1990).We consider the research group formed at this time and the hardware available to this group. Parallel hardware as the transputer is considered and the ancient parallel computers from that time are depicted. The group has been formed by the series of workshops and seminars that took place; and the FEM-Symposium is still organized annually. We will focus on a few of these activities and present the developments in hardware, numerical methods, parallel algorithms and analysis that have been discussed between professors, research assistants and students. The paper contains also a brief view on parallel computers available to that group today and some examples document how the computing power has increased during a period of more than 20 years.

Keywords

Boundary Element Method Parallel Computing Parallel Computer Domain Decomposition Multigrid Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apel, T., Haase, G., Meyer, A., Pester, M.: Parallel solution of finite element equation systems: efficient inter-processor communication. Preprint-Reihe der Chemnitzer DFG-Forschergruppe “Scientific Parallel Computing” SPC 95-5, TU Chemnitz-Zwickau (1995)Google Scholar
  2. 2.
    Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods I. Numer. Math. 56, 157–177 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods II. SIAM J. Numer. Anal. 27, 1569–1590 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bahlmann, D., Langer, U.: A fast solver for the first biharmonic boundary value problem. Numer. Math. 63(1), 297–313 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    BBC: MICRO LIVE television (1986), http://www.youtube.com/watch?v=Bn35IbEcEMM
  6. 6.
    Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring, I. Math. Comp. 47(175), 103–134 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bramble, J.H., Pasciak, J.E., Schatz, A.H.: An iterative method for elliptic problems on regions partitioned into substructures. Math. Comp. 46(173), 361–369 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Burkhardt, S., Fritzsche, M., Nowak, O.: Der Transputer (Teil 1). Radio Fernsehen Elektronik 38(11), 687–690 (1989)Google Scholar
  9. 9.
    Burkhardt, S., Fritzsche, M., Nowak, O.: Der Transputer (Teil 2). Radio Fernsehen Elektronik 38(12), 760–763, 808 (1989)Google Scholar
  10. 10.
    Burkhardt, S., Drey, K.D., Friedrich, V., Nowak, O.: Parallele Rechnertsysteme: Programmierung und Anwendung. Verlag Technik, Berlin/München (1993)Google Scholar
  11. 11.
    Carstensen, C., Kuhn, M., Langer, U.: Fast parallel solvers for symmetric boundary element domain decomposition equations. Numer. Math. 79(3), 321–347 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Douglas, C., Haase, G., Langer, U.: A Tutorial on Elliptic PDE Solvers and Their Parallelization. Software, Environments, and Tools. SIAM, Philadelphia (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dryja, M., Widlund, O.B.: Some domain decomposition algorithms for elliptic problems. In: Hayes, L., Kincaid, D. (eds.) Proceeding of the Conference on Iterative Methods for Large Linear Systems held in Austin, Iterative Methods for Large Linear Systems, October 19-21, pp. 273–291. Academic Press, San Diego (1988)Google Scholar
  14. 14.
    Ewing, R., Lazarov, R.: Local refinement techniques in the finite element and finite difference methods. In: Numerical Methods and Applications, pp. 148–159. Publishing House of the Bulgarian Acad. Sci. (1989)Google Scholar
  15. 15.
    Ewing, R., Lazarov, R., Wang, J.: Superconvergence of the velocity along the Gauss lines in the mixed finite element methods. SIAM J. Numer. Anal. 4(28), 1015–1029 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Globisch, G.: PARMESH - a parallel mesh generator. Parallel Computing 21(3), 509–524 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Globisch, G., Jung, M.: Mehrgitterverfahren für Interfaceprobleme. In: [35], pp. 60–84 (1990)Google Scholar
  18. 18.
    Globisch, G., Langer, U.: On the use of multigrid preconditioners in a multigrid software package. In: [50], pp. 105–134 (1990)Google Scholar
  19. 19.
    Haase, G., Langer, U.: On the use of multigrid preconditioners in the domain decomposition method. In: [31], pp. 101–110 (1991)Google Scholar
  20. 20.
    Haase, G., Langer, U.: The non-overlapping domain decomposition multiplicative Schwarz method. Inter. J. Computer. Math. 44, 223–242 (1992)zbMATHCrossRefGoogle Scholar
  21. 21.
    Haase, G., Nepomnyaschikh, S.V.: Explicit extension operators on hierarchical grids. East-West J. Numer. Math. 5(4), 231–248 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Haase, G., Langer, U., Meyer, A.: A new approach to the Dirichlet domain decomposition method. In: [35], pp. 1–59 (1990)Google Scholar
  23. 23.
    Haase, G., Langer, U., Meyer, A.: The approximate Dirichlet decomposition method. Part I: An algebraic approach. Computing 47, 137–151 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Haase, G., Langer, U., Meyer, A.: The approximate Dirichlet decomposition method. Part II: Application to 2nd-order elliptic BVPs. Computing 47, 153–167 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Haase, G., Langer, U., Meyer, A.: Domain decomposition preconditioners with inexact subdomain solvers. J. Numer. Lin. Alg. Appl. 1, 27–42 (1992)MathSciNetGoogle Scholar
  26. 26.
    Haase, G., Langer, U., Meyer, A.: Parallelisierung und Vorkonditionierung des CG-Verfahrens durch Gebietszerlegung. In: Parallele Algorithmen auf Transputersystemen. Tagungsbericht der GAMM-Tagung, Heidelberg, May 31-June 1, 1991, vol. III, Teubner-Scripten zur Numerik, Teubner, Stuttgart (1992)Google Scholar
  27. 27.
    Haase, G., Langer, U., Meyer, A., Nepomnyaschikh, S.V.: Hierarchical extension operators and local multigrid methods in domain decomposition preconditioners. East-West J. Numer. Math. 2(3), 173–193 (1994)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Haase, G., Hommel, T., Meyer, A., Pester, M.: Bibliotheken zur Entwicklung paralleler Algorithmen. Preprint-Reihe der Chemnitzer DFG-Forschergruppe ”Scientific Parallel Computing” SPC 95-20, TU Chemnitz-Zwickau (1995)Google Scholar
  29. 29.
    Haase, G., Heise, B., Kuhn, M., Langer, U.: Adaptive domain decomposition methods for finite and boundary element equations. In: Wendland, W.L. (ed.) Boundary Element Topics. Reports from the Final Conference of the Priority Research Programme of the German Research Foundation (DFG), Stuttgart, October 2-4, 1995, pp. 121–148. Springer, Berlin (1997)Google Scholar
  30. 30.
    Haase, G., Liebmann, M., Douglas, C.C., Plank, G.: A Parallel Algebraic Multigrid Solver on Graphics Processing Units. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds.) HPCA 2009. LNCS, vol. 5938, pp. 38–47. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Hackbusch, W. (ed.): Parallel Algorithms for Partial Differential Equations. Proceedings of the Sixth GAMM-Seminar, Kiel, January 19-21,1990. Vieweg, Braunschweig (1991)zbMATHGoogle Scholar
  32. 32.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Heise, B.: Multigrid-Newton-methods for the calculation of electromagnetic fields. In: [50], pp. 53–73 (1989)Google Scholar
  34. 34.
    Heise, B.: Nichtlineare Berechnung stationärer Magnetfelder einer Gleichstrommaschine mittels Full-Multigrid-Newton-Techniken. In: [51], pp. 135–146 (1990)Google Scholar
  35. 35.
    Hengst, S. (ed.): Proceedings of the ”5-th Multigrid Seminar” held at Eberswalde, May 14-18. R-MATH-09/90. Academy of Sciences, Berlin (1990)Google Scholar
  36. 36.
    Hoffmann, K.H., Meyer, A. (eds.): Parallel Algorithms and Cluster Computing. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  37. 37.
    Jung, M.: On the parallelization of multi-grid methods using a non-overlapping domain decomposition data structure. Appl. Numer. Math. 23(1), 119–137 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Jung, M., Langer, U., Meyer, A., Queck, W., Schneider, M.: Multigrid preconditioners and their applications. In: [51], pp. 11–52 (1990)Google Scholar
  39. 39.
    Law, K.H.: A parallel finite element solution method. Computer and Structures 23(6), 845–858 (1989)CrossRefGoogle Scholar
  40. 40.
    Meyer, A.: A parallel preconditioned conjugate gradient method using domain decomposition and inexact solvers on each subdomain. Computing 45, 217–234 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Pester, M.: Implementation und Test paralleler Basisalgorithmen der linearen Algebra. In: Grebe, R., Ziemann, C. (eds.) Parallele Datenverarbeitung mit dem Transputer. 2. Transputer–Anwender–Treffen TAT 1990. Proceedings X. Informatik–Fachberichte, vol. 272, pp. 111–118. Springer (1991)Google Scholar
  42. 42.
    Pester, M.: Parallele Implementation der iterativen Auflösung von Randelementgleichungen. In: 3. Transputer–Anwender–Treffen TAT 1991. Proceedings, RWTH Aachen and Parsytec GmbH Aachen (1991)Google Scholar
  43. 43.
    Pester, M., Rjasanow, S.: A parallel version of the preconditioned conjugate gradient method for boundary element equations. J. Numer. Lin. Alg. Appl. 2(1), 1–16 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Pester, M., Rjasanow, S.: A parallel preconditioned iterative realization of the panel method in 3D. J. Numer. Lin. Alg. Appl. 3(1), 65–80 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Pichlik, H.: Transputer-(R)evolution H1. c’t 1, 62–69 (1991)Google Scholar
  46. 46.
    Pountain, D.: H1 - neue Transputergeneration. c’t 7, 34–43 (1990)Google Scholar
  47. 47.
    Sattelkau, M.: Transputer. Mikroprozessortechnik 2(5), 131–132 (1988)Google Scholar
  48. 48.
    Schlechter, J.: Innovative Computerarchitektur - Transputer. Mikroprozessortechnik 3(1), 11–12 (1989)Google Scholar
  49. 49.
    Steidten, T.: Application of multigrid methods to mechanical and thermo-mechanical problems. In: [35], pp. 85–96 (1990)Google Scholar
  50. 50.
    Telschow, G. (ed.): Proceedings of the ”3-rd Multigrid Seminar” held at Biesenthal, May 2-6, 1988, R-MATH-03/89, Academy of Sciences, Berlin (1989)Google Scholar
  51. 51.
    Telschow, G. (ed.): Proceedings of the ”4-th Multigrid Seminar” held at Unterwirrbach, May 2-6, 1989, R-MATH-03/90. Academy of Sciences, Berlin (1990)Google Scholar
  52. 52.
    Yserentant, H.: Hierarchical bases give conjugate gradient type methods a multigrid speed of convergence. Appl. Math. Comp. 19, 347–358 (1986)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Mathematik und Wissenschaftliches RechnenKarl–Franzens Universität GrazGrazAustria
  2. 2.Fakultät für MathematikTU ChemnitzChemnitzGermany

Personalised recommendations