Skip to main content

Circuit Approach for Simulation of EM-quantum Components

  • Chapter
Applications of Advanced Electromagnetics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 169))

  • 2934 Accesses

Abstract

This Chapter is on the circuit approach to describe the quantummechanical phenomena. Being proposed by G. Kron many years ago, this technique is now a very powerful tool for modeling and design of hybrid electronics integrating the classical and quantum-mechanical components. The linear and non-linear Schrödinger equations are transformed into the first-order partial differential equations with respect to currents and voltages, and the obtained equivalent circuits are modeled using a commercially available simulator. The approach is pertinent for seamless simulation of the future-generation integration, although the main attention in this Chapter is paid to the modeling of trapped Bose-Einstein condensates. References -108. Figures -34. Pages -54.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tour, J.M.: Molecular Electronics. World Sci. (2003)

    Google Scholar 

  2. Deleonibus, S. (ed.): Electronic Device Architectures for the Nano-CMOS Era. World Sci. (2008)

    Google Scholar 

  3. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topological Methods in Nonlinear Analysis 11, 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Ginbre, B., Velo, G.: Long range scattering for the Maxwell-Schrödinger system with large magnetic field data and small Schrödinger data. Publ. RIMS, Kyoto Univ. 42, 421–459 (2006)

    Article  Google Scholar 

  5. Yang, J., Sui, W.: Solving Maxwell-Schrödinger equations for analyses of nano-scale devices. In: Proc. 37th Europ. Microw. Conf., pp. 154–157 (2007)

    Google Scholar 

  6. Pieratoni, B., Mencarelli, D., Rozzi, T.: A new 3-D transmission line matrix scheme for the combined Schrödinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices. IEEE Trans., Microwave Theory Tech. 56, 654–662 (2008)

    Article  Google Scholar 

  7. Pieratoni, B., Mencarelli, D., Rozzi, T.: Boundary immitance operators for the Schrödinger-Maxwell problem of carrier dynamics in nanodevices. IEEE Trans., Microwave Theory Tech. 57, 1147–1155 (2009)

    Article  Google Scholar 

  8. Mastorakis, N.E.: Solution of the Schrödinger-Maxwell equations via finite elements and genetic algorithms with Nelder-Mead. WSEAS Trans. Math. 8, 169–176 (2009)

    MathSciNet  Google Scholar 

  9. Kron, G.: Electric circuit model of the Schrödinger equation. Phys. Rev. (1&2) (1945)

    Google Scholar 

  10. Sanada, H., Suzuki, M., Nagai, N.: Analysis of resonant tunneling using the equivalent transmission-line model. IEEE J. Q. Electron. 33, 731–741 (1977)

    Article  Google Scholar 

  11. Anwar, A.F.M., Khondker, A.N., et al.: Calculation of the transversal time in resonant tunneling devices. J. Appl. Phys. 65, 2761–2765 (1989)

    Article  Google Scholar 

  12. Kaji, R., Koshiba, M.: Equivalent network approach for guided electron waves in quantum-well structures and its application to electron-wave directional couplers. IEEE J. Quant. Electron 31, 1036–1043 (1994)

    Article  Google Scholar 

  13. Civalleri, P.P., Gilli, M., Bonnin, M.: Equivalent circuits for two-state quantum systems. Int. J. Circ. Theory Appl. 35, 265–280 (2007)

    Article  Google Scholar 

  14. Kouzaev, G.A.: Hertz vectors and the electromagnetic-quantum equations. Mod. Phys. Lett. B 24(24), 2117–2212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kouzaev, G.A.: Calculation of linear and non-linear Schrödinger equations by the equivalent network approach and envelope technique. Modern Phys. Lett. B 24, 29–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matyas, A., Jirauschek, C., Perretti, P., et al.: Linear circuit models for on-chip quantum electrodynamics. IEEE Trans., Microw. Theory Tech. 59, 65–71 (2011)

    Article  Google Scholar 

  17. Kouzaev, G.A., Nazarov, I.V., Kalita, A.V.: Unconventional logic elements on the base of topologically modulated signals. El. Archive, http://xxx.arXiv.org/abs/physics/9911065

  18. Kouzaev, G.A., Lebedeva, T.A.: Multivalued and quantum logic modeling by mode physics and topologically modulated signals. In: Proc. Int. Conf. Modelling and Simulation, Las Palmas de Grand Canaria, Spain, September 25-27 (2000), http://www.dma.ulpgc.es/ms2000

  19. Kouzaev, G.A.: Predicate and pseudoquantum gates for amplitude-spatially modulated electromagnetic signals. In: Proc. 2001 IEEE Int. Symp. Intelligent Signal Processing and Commun. Systems, Nashville, Tennessee, USA, November 20-23 (2001)

    Google Scholar 

  20. Kouzaev, G.A.: Qubit logic modeling by electronic gates and electromagnetic signals. El. Archive (2001), http://xxx.arXiv.org/abs/quant-ph/0108012

  21. Advanced Design System 2008. Agilent Corp. (2008)

    Google Scholar 

  22. A User Guide to Envelope Following Analysis Using Spectre RF. Cadence Corp. (2007)

    Google Scholar 

  23. Visscher, P.B.: A fast explicit algorithm for the time-dependent Schrödinger equation. Comp. Phys. 5/6, 596–598 (1991)

    Google Scholar 

  24. Frank, T.D.: Nonlinear Fokker-Planck Equations: Fundamentals and Applications. Springer, Berlin (2005)

    Google Scholar 

  25. Norbe, F.D., Rego-Monteiro, M.A., Tsallis, C.: A generalized nonlinear Schroedinger equation: Classical field-theoretic approach. Eur. Phys. Lett. 97(1-5), 41001 (2012)

    Google Scholar 

  26. Belevitch, V.: Classical Network Theory. Holden-Day (1968)

    Google Scholar 

  27. Galizkyi, V.M., Kornakov, B.M., Kogan, V.I.: Tasks to Solve in Quantum Mechanics (Zadachi po Kvantovoy Mekhanike), Nauka (1981) (in Russian)

    Google Scholar 

  28. Gross, E.P.: Structure of a quantized vortex in boson systems II. Nouvo Cimento 20, 454–457 (1961)

    Article  MATH  Google Scholar 

  29. Pitaevskii, L.V.: Vortex lines in an imperfect Bose gas. Soviet Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  30. Pitaevskii, L.P., Stringari, S.: Bose-Einstein Condensation. Clareton Press (2003)

    Google Scholar 

  31. Ueda, M.: Fundamentals and New Frontiers of Bose-Einstein Condensation. World Scientific (2010)

    Google Scholar 

  32. Vengalattore, M., Higbie, J.M., Leslie, S.R., et al.: High-Resolution Magnetometry with a spinor Bose-Einstein Condensate. Phys. Rev. Lett. 98, 200801 (2007)

    Article  Google Scholar 

  33. Simmonds, R.W., Marchenkov, A., Hoskinson, E., et al.: Quantum interference of super fluid 3He. Nature 412, 55–58 (2001)

    Article  Google Scholar 

  34. Seaman, T., Krämer, M., Anderson, D.Z., et al.: Atomtronics: ultracold-atom analogs of electronic devices. Phys. Rev. A 75, 023615 (2007)

    Article  Google Scholar 

  35. Stickney, J.A., Anderson, D.Z., Zozulya, A.A.: Transistorlike behavior of a Bose-Einstein condensate in a triple-well potential. Phys. Rev. A 75, 013608 (2007)

    Article  Google Scholar 

  36. Ramanathan, A., Wright, K.C., Muniz, S.R., et al.: Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. Phys. Rev. Lett. 106, 13041 (2001)

    Google Scholar 

  37. Farkas, M., Hudek, K.M., Salim, E.A., et al.: A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates. App. Phys. Lett. 96, 093102 (2001)

    Article  Google Scholar 

  38. Cataliotti, F., Burger, S., Fort, C., et al.: Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001)

    Article  Google Scholar 

  39. Succi, S., Toschi, F., Tosi, M.P., et al.: Bose-Einstein condensates and the numerical solution of Gross-Pitaevskii equation. IEEE Comput. Sci. Eng. 7, 48–57 (2005)

    Google Scholar 

  40. Cerimele, M.M., Chiofalo, M.L., Pistella, F., et al.: Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose-Einstein condensates. Phys. Rev. E 62, 1382–1389 (2000)

    Article  Google Scholar 

  41. Bao, W., Tang, W.: Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional. J. Comput. Phys. 187, 230–254 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kron, G.: Numerical solution of ordinary and partial differential equations by means of equivalent circuits. J. Appl. Phys. 16, 172–186 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kron, G.: Equivalent circuit of the field equations of Maxwell. In: Proc. I. R. E., pp. 289–299 (1944)

    Google Scholar 

  44. Dragoman, D., Dragoman, M.: Quantum-classical Analogies. Springer (2004)

    Google Scholar 

  45. Kouzaev, G.A.: Co-design of quantum and electronic integrations by available circuit simulators. In: Proc. 13th Int. Conf. Circuits, Rodos, Greece, pp. 152–156 (2009)

    Google Scholar 

  46. Holland, M.J., Jin, D.S., Chiofalo, M.L., et al.: Emergence of interaction effects in Bose-Einstein condensation. Phys. Rev. Lett. 78, 3801–3805 (1997)

    Article  Google Scholar 

  47. Bogolubov, N.: J. Phys 11, 23 (1947) (in Russian)

    MathSciNet  Google Scholar 

  48. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge Press (2003)

    Google Scholar 

  49. Chevy, F., Dalibard, J.: Rotating Bose-Einstein condensates. Europhysicsnews 37, 12–16 (2006)

    Google Scholar 

  50. Rozanov, N.N., Rozhdestvenkyi, Y.V., Smirnov, V.A., et al.: Atomic “Needles” and “Bullets” of the Bose-Einstein condensate and forming of nano-size structures. Pisma v ZHETF- Lett. J. Exper. Theor. Phys. 77, 89–92 (2003) (in Russian)

    Google Scholar 

  51. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)

    Article  Google Scholar 

  52. Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  53. Balykin, V.I., Minogin, V.G., Letokhov, V.S.: Electromagnetic trapping of cold atoms. Rep. Prog. Phys. 61, 1429–1510 (2000)

    Article  Google Scholar 

  54. Chu, S.: Laser manipulations of atoms and particles. Science 253, 861–866 (1991)

    Article  Google Scholar 

  55. Cohen-Tannoudji, C., Guerry-Odelin, D.: Advances in Atomic Physics: an Overview. World Scientific (2011)

    Google Scholar 

  56. Phillips, W.D.: Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998)

    Article  Google Scholar 

  57. Friedman, N., Kaplan, A., Davidson, N.: Dark optical traps for cold atoms. Adv. Atomic, Molec., Opt. Phys. 48, 99–151 (2002)

    Article  Google Scholar 

  58. Noh, H.-R., Jhe, W.: Atom optics with hollow optical systems. Phys. Reports 372, 269–317 (2002)

    Article  Google Scholar 

  59. Kuhr, S., Alt, W., Schrader, D., et al.: Deterministic delivery of a single atom. Science 293, 278–280

    Google Scholar 

  60. Mandel, A., Greiner, M., Widera, A., et al.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003)

    Article  Google Scholar 

  61. Schrader, D., Dotsenko, I., Khudaverdyan, M., et al.: Neutral atom quantum register. Phys. Rev. Lett. 93(1-4), 150501

    Google Scholar 

  62. Bloch, I.: Exploring quantum matter with ultracold atoms in optical lattices. J. Phys. B 38, S629–S643 (2005)

    Article  Google Scholar 

  63. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultra-cold gases. Rev. Mod. Phys., 885–964 (2008)

    Google Scholar 

  64. Bergman, T., Erez, G., Metcalf, H.J.: Magnetostatic trapping fields for neutral atoms. Phys. Rev. A 35, 1535–1546 (1987)

    Article  Google Scholar 

  65. AMPERES Program Guide. Integrated Software Eng. Inc. (2006)

    Google Scholar 

  66. Sand, K.J.: On the design and simulation of electromagnetic traps and guides for ultra-cold matter. PhD Thesis, NTNU, Trondheim, Norway, 252 p (2010)

    Google Scholar 

  67. Kouzaev, G.A., Sand, K.J.: RF controllable Ioffe-Pritchard trap for cold dressed atoms. Modern Phys. Lett. B 21, 59–68 (2007)

    Article  MATH  Google Scholar 

  68. Thomas, N.R., Foot, C.J., Wilson, A.C.: Double-well magnetic trap for Bose-Einstein condensates. ArXiv: cond-mat/01108169 (2001)

    Google Scholar 

  69. Tiecke, T.G., Kemmann, M., Buggle, C., et al.: Bose-Einstein condensation in a magnetic double-well potential. ArXiv: cond-mat/0211604 (2002)

    Google Scholar 

  70. Rechel, J., Hansel, W., Hommelholf, P., et al.: Applications of integrated magnetic microtraps. Appl. Phys. B 72, 81–89 (2001)

    Article  Google Scholar 

  71. Jones, M.P.A., Vale, C.J., Sahagun, D., et al.: Cold atoms probe the magnetic field near a wire. J. Phys. B 37, L15–L20 (2004)

    Article  Google Scholar 

  72. Crookston, M.B., Baker, P.M., Robinson, M.P.: A microstrip ring trap for cold atoms. J. Phys. B 38, 3227–3289 (2005)

    Article  Google Scholar 

  73. Koukharenko, E., Mktadir, Z., Kraft, M., et al.: Microfabrication of gold wires for atom guides. Sensors and Actuators A 115, 600–607

    Google Scholar 

  74. Henkel, Wilkens, M.: Heating of trapped atoms near thermal surfaces. Europhys. Lett. 47, 414–420 (1999)

    Article  Google Scholar 

  75. Fermani, R., Scheel, S., Knight, P.L.: Trapping cold atoms near carbon nanotubes: Thermal spin flips and Casimir-Polder potential. Phys. Rev. A 75(1-7), 062905 (2007)

    Article  Google Scholar 

  76. Bostroem, M., Sernelius, B.E., Brevik, I., et al.: Retardation turns the van der Waals attraction into a Casimir repulsion as close as 3 nm. Phys. Rev. A 85(1-4), 010701

    Google Scholar 

  77. Kouzaev, G.A., Sand, K.J.: 3D multicell designs for registering of Bose-Einstein condensate clouds. Modern Phys. Lett. 22(25), 2469–2479 (2008)

    Article  Google Scholar 

  78. Shi, Y.: Entanglement between Bose-Einstein condensates. Int. J. Modern. Phys. B 15, 3007–3030 (2001)

    Article  Google Scholar 

  79. Yalabik, M.C.: Nonlinear Schrödinger equation for quantum computation. Modern Physics Lett. B 20, 1099–1106 (2006)

    Article  MATH  Google Scholar 

  80. Albiez, M., Gati, R., Foeling, J., et al.: Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95(1-4), 010402 (2005)

    Article  Google Scholar 

  81. Levy, S., Lahoud, E., Shomroni, I., et al.: The a.c. and d.c. Josephson effects in a Bose-Einstein condensate. Nature 449, 579–583 (2007)

    Article  Google Scholar 

  82. Muskat, E.: Dressed neutrons. Phys. Rev. Lett. 58, 2047–2050 (1987)

    Article  Google Scholar 

  83. Zobay, O., Garraway, B.M.: Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195–1198 (2001)

    Article  Google Scholar 

  84. Colombe, Y., Knyazchyan, E., Morizot, O., et al.: Ultracold atoms confined in rf-induced two-dimensional trapping potentials. arXiv:quant-ph/0403006

    Google Scholar 

  85. Courteille, P.W., Deh, B., Fortag, J., et al.: Highly versatile atomic micro traps generated by multifrequency magnetic field modulation. arXiv:quant-ph/0512061

    Google Scholar 

  86. Schumm, T., Hofferberth, S., Andersson, L.M., et al.: Matter-wave interferometry in a double well on an atom chip. Nature Physics 1, 57–62 (2005)

    Article  Google Scholar 

  87. Lesanovsky, I., Schumm, T., Hofferberth, S., et al.: Adiabatic radio frequency potentials for coherent manipulation of matter waves. ArXiv:physics/0510076

    Google Scholar 

  88. Ol’shanii, M.A., Ovchinnikov, Y.V., Letokhov, V.S.: Laser guiding of atoms in a hollow optical fiber. Opt. Commun. 98, 77–79 (1993)

    Article  Google Scholar 

  89. Renn, M.J., Mongomery, D., Vdovin, O., et al.: Laser-Guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 75, 3253–3256 (1995)

    Article  Google Scholar 

  90. Renn, M.J., Donley, E.A., Cornell, E.A., et al.: Evanescent-wave guiding of atoms in hollow optical fibers. Phys. Rev. A 53, R648–R651 (1996)

    Article  Google Scholar 

  91. Song, Y., Milam, D., Hill III, W.T.: Long, narrow all-light atom guide. Opt. Lett. 24, 1805–1807 (1999)

    Article  Google Scholar 

  92. Myatt, C.J., Newbury, N.R., Ghrist, R.W., et al.: Multiply loaded magneto-optical trap. Opt. Lett. 21, 290–292

    Google Scholar 

  93. Goepfert, A., Lison, F., Schutze, R., et al.: Efficient magnetic guiding and deflection of atomic beams with moderate velocities. Appl. Phys. B 69, 217–222

    Google Scholar 

  94. Key, M., Hughes, I.G., Rooijakkers, W., et al.: Propagation of cold atoms along a miniature magnetic guide. Phys. Rev. Lett. 84, 1371–1373 (2000)

    Article  Google Scholar 

  95. Teo, B.K., Raithel, G.: Loading mechanism for atomic guides. Phys. Rev. A 63(1-4), 031402 (2001)

    Article  Google Scholar 

  96. Yung-Kuo, L.: Problems and Solutions on Electromagnetism. World Scientific (1993)

    Google Scholar 

  97. Subbotin, M.V., Balykin, V.I., Laryushin, D.L., et al.: Laser controlled atom waveguide as a source of ultracold atoms. Opt. Commun. 139, 107 (1997)

    Article  Google Scholar 

  98. Greiner, M., Bloch, I., Haensh, T.W., et al.: Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63(1-4), 0131401 (2001)

    Google Scholar 

  99. Kouzaev, G.A., Sand, K.J.: Inter-wire transfer of cold dressed atoms. Modern Phys. Lett. B 21, 1653–1665 (2007)

    Article  Google Scholar 

  100. Weinstein, J.D., Librecht, K.G.: Microscopic magnetic traps for neutral particles. Phys. Rev. A 52, 4004–4009 (1995)

    Article  Google Scholar 

  101. Thywissen, J.J., Olshanii, M., Zabow, G., et al.: Microfabricated magnetic waveguides for neutral atoms. Eur. Phys. J. D 7, 361–367 (1999)

    Article  Google Scholar 

  102. Allwood, D.A., Schrefl, T., Hrkac, G., et al.: Mobile atom traps using nanowires. Appl. Phys. Lett. 89(1-3), 014102 (2006)

    Article  Google Scholar 

  103. Dekker, N.H., Lee, C.S., Lorent, V., et al.: Guiding neutral atoms on a chip, vol. 84, pp. 1124–1127 (2000)

    Google Scholar 

  104. Tonyshkin, A., Prentiss, M.: Straight macroscopic magnetic guide for cold atom interferometer. J. Appl. Phys. 108(1-5), 094904 (2010)

    Article  Google Scholar 

  105. Bongs, K., Burger, S., Dettmer, S., et al.: Waveguide for Bose-Einstein condensates. Phys. Rev. A 63(1-4), 031602 (2001)

    Article  Google Scholar 

  106. Treutlein, P., Hommelhoff, P., Steinmetz, T., et al.: Coherence in microstrip traps. Phys. Rev. Lett. 92(1-4), 203005 (2004)

    Article  Google Scholar 

  107. Treutlein, P., Steinmetz, T., Colombe, Y., et al.: Quantum information processing in optical lattices and magnetic microtraps. Fortschr. Phys. 54, 702–718 (2006)

    Article  Google Scholar 

  108. Boehi, P., Riedel, M.F., Hoffrogge, J., et al.: Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip. Nature Physics 5, 592–597 (2009)

    Article  Google Scholar 

  109. Sun, Y., Tan, W., Jiang, H.-T., et al.: Metamaterial analog of quantum interference: From electromagnetically induced transparency to absorbtion. EPLA 98, 6407 (1-6) (2012)

    Google Scholar 

  110. Rangelow, A.A., Suchowski, H., Silberberg, Y., et al.: Wireless adiabatic power transfer. Annals of Phys. 326, 626–633 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guennadi A. Kouzaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Kouzaev, G.A. (2013). Circuit Approach for Simulation of EM-quantum Components. In: Applications of Advanced Electromagnetics. Lecture Notes in Electrical Engineering, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30310-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30310-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30309-8

  • Online ISBN: 978-3-642-30310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics