Advertisement

Transmission Lines and Their EM Models for the Extended Frequency Bandwidth Applications

  • Guennadi A. Kouzaev
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 169)

Abstract

In this Chapter, an analytical review on interated transmission lines for millimeter-wave applications is given. Several tens of lines are analyzed and their characteristics are compared. The results of comparison are in a table showing the transmission lines’ loss, used materials, technologies, etc. Interconnects based on new effects are considered in this Chapter as well. References -252. Figures -47. Pages -85.

Keywords

Transmission Line Characteristic Impedance Rectangular Waveguide Microstrip Line Effective Permittivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barret, R.M.: Microwave printed circuits - the early years. IEEE Trans., Microw. Theory Tech. 32, 983–990 (1984)CrossRefGoogle Scholar
  2. 2.
    Marcuvitz, N.: Waveguide Handbook. Inst. of Eng. and Techn. Publ. (1986)Google Scholar
  3. 3.
    Hoffman, R.K.: Handbook of Microwave Integrated Circuits. Artech House (1987)Google Scholar
  4. 4.
    Kompa, G.: Practical Microstrip Design and Applications. Artech House (2005)Google Scholar
  5. 5.
    Kovalev, I.S.: Theory and Calculation Strip Waveguides. Minsk (1967) (in Russian)Google Scholar
  6. 6.
    Nefeodov, E.I., Fialkovskyi, A.T.: Strip Transmission Lines. Theory and Calculation of Discontinuities. Nauka, Moscow (1974) (in Russian)Google Scholar
  7. 7.
    Nikolskyi, V.V.: Computer Aided Design of Microwave Devices. Nauka (1980) (in Russian)Google Scholar
  8. 8.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K.: A parallel-plate waveguide model of lossy microstrip transmission line. IEEE Microw. Wireless Comp. Lett. 15, 27–29 (2005)CrossRefGoogle Scholar
  9. 9.
    Schnieder, F., Heinrich, W.: Model of thin-film microstrip line for circuit design. IEEE Trans., Microw. Theory Tech. 49, 104–110 (2001)CrossRefGoogle Scholar
  10. 10.
    Olyslager, F., De Zutter, D., Blomme, K.: Rigorous analysis of the propagation characteristics of general lossless and lossy multiconductor transmission lines in multilayered media. IEEE Trans., Microw. Theory Tech. 41, 79–88 (1993)CrossRefGoogle Scholar
  11. 11.
    Tzuang, C.-K.C., Tseng, J.-D.: A full-wave mixed potential mode-matching method for the analysis of planar or quasi-planar transmission lines. IEEE Trans., Microw. Theory Tech. 39, 1701–1711 (1991)CrossRefGoogle Scholar
  12. 12.
    Gong, X., Gao, B., Tian, Y., et al.: An analysis of characteristics of coplanar transmission lines with finite conductivity and finite strip thickness by the method of lines. J. Infrared Milli. Terahz Waves 30, 792–801 (2009)CrossRefGoogle Scholar
  13. 13.
    Pucel, R.A., Masse, D.J., Hartwig, C.P.: Losses in microstrip. IEEE Trans., Microw. Theory Tech. 16, 342–350 (1968)CrossRefGoogle Scholar
  14. 14.
    Lee, H.-Y., Itoh, T.: Phenomenological loss equivalence method for planar quasi-TEM transmission lines with a thin normal conductor or superconductor. IEEE Trans., Microw. Theory Tech. 37, 1904–1909 (1989)CrossRefGoogle Scholar
  15. 15.
    Verma, A.K., Bhupal, A.: Conductor loss of multilayer microstrip line using the single layer reduction formulation. Microw. Opt. Tech. Lett. 19, 20–24 (1998)CrossRefGoogle Scholar
  16. 16.
    Tuncer, E., Lee, B.-T., Islam, M.S., et al.: Quasi-static conductor loss calculations in transmission lines using a new conformal mapping technique. IEEE Trans., Microw. Theory Tech. 42, 1807–1815 (1994)CrossRefGoogle Scholar
  17. 17.
    Djordjevic, A.R., Sarkar, T.P.: Closed-form formulas for frequency-dependent resistance and inductance per unit length of microstrip and strip lines. IEEE Trans., Microw. Theory Tech. 42, 241–248 (1994)CrossRefGoogle Scholar
  18. 18.
    Goldfarb, M.E., Platzker, A.: Losses in GaAs microstrip. IEEE Trans., Microw. Theory Tech. 38, 1957–1963 (1990)CrossRefGoogle Scholar
  19. 19.
    Conn, D.R., Naguib, H.M., Anderson, C.M.: Mid-film for microwave integrated circuits. IEEE Trans., Comp., Hybrids, Manuf. Tech. 5, 185–191 (1982)CrossRefGoogle Scholar
  20. 20.
    Torres-Torres, R.: Extracting characteristic impedance in low-loss substrate. El. Lett. 47(3), 191–193 (2011)CrossRefGoogle Scholar
  21. 21.
    Crute, J.R., Davis, L.E.: Loss characteristics of high-ε r microstrip lines fabricated by an etchable thick-film on ceramic MCM technology. IEEE Trans., Adv. Pack. 25, 393–396 (2002)CrossRefGoogle Scholar
  22. 22.
    Guckel, H., Brennan, P.A., Paloscz, I.: A parallel-plate waveguide approach to micro-miniaturized, planar transmission lines for integrated circuits. IEEE Trans., Microw. Theory Tech. 15, 468–476 (1967)CrossRefGoogle Scholar
  23. 23.
    Pond, J.M., Krowne, C.M., Carter, W.L.: On the application of complex resistive boundary conditions to model transmission line consisting of very thin superconductors. IEEE Trans., Microw. Theory Tech. 37, 181–190 (1967)CrossRefGoogle Scholar
  24. 24.
    Kouzaev, G.A.: Quasistatic model of ribbed nonsymmetrical slotted line. Radio Eng. Electron. Phys. 28, 137–138 (1983)Google Scholar
  25. 25.
    Schneider, M.V.: Dielectric loss in integrated microwave circuits. Bell Syst. Tech. J. 48, 2325–2332 (1969)Google Scholar
  26. 26.
    Glib, J.P.K., Balanis, C.A.: Transient analysis of distortion and coupling in lossy coupled microstrips. IEEE Trans., Microwave Theory Tech. 38, 1894–1899 (1990)CrossRefGoogle Scholar
  27. 27.
    Paleczny, E., Kinowski, D., Legier, J.F., et al.: Comparison of full wave approaches for determination of microstrip conductor losses for MMIC applications. El. Lett. 26(3), 2076–2077 (1990)CrossRefGoogle Scholar
  28. 28.
    Wang, E.-K., Tzuang, C.-K.C.: Full-wave analyses of composite-metal multidielectric lossy microstrips. IEEE Microw. Guided Wave Lett. 1, 97–99 (1991)CrossRefGoogle Scholar
  29. 29.
    Peytavit, E., Donche, C., Lepilliet, S., et al.: Thin-film transmission lines using cyclic olefin copolymer for millimetre-wave and terahertz integrated circuits. El. Lett. 47(7), 453–454 (2011)CrossRefGoogle Scholar
  30. 30.
    Mongia, R., Bahl, I., Bhartia, P.: RF and Microwave Coupled-Line Circuits. Artech House (1999)Google Scholar
  31. 31.
    Svačina, W.J.: Analysis of multilayer microstrip lines by a conformal mapping method. IEEE Trans., Microw. Theory Tech. 40, 769–772 (1992)CrossRefGoogle Scholar
  32. 32.
    Lutz, R.D., Tripathi, V.K., Weisshaar, A.: Enhanced transmission characteristics of on-chip interconnects with orthogonal gridded shield. IEEE Trans., Adv. Pack. 24, 288–293 (2001)CrossRefGoogle Scholar
  33. 33.
    Chiang, M.-J., Wu, H.-S., Tzuang, C.-K.C.: Design of synthetic quasi-TEM Transmission line for CMOS compact integrated circuit. IEEE Trans., Microw. theory Tech. 55, 2512–2520 (2007)CrossRefGoogle Scholar
  34. 34.
    Chiang, M.-J.: Highly integrated three-dimensional synthetic transmission line design on silicon substrate. Microw. Opt. Tech. Lett. 53, 2604–2607 (2011)CrossRefGoogle Scholar
  35. 35.
    Williams, D.F.: Metal-insulator-semiconductor transmission lines. IEEE Trans., Microw. Theory Tech. 47, 176–181 (1999)CrossRefGoogle Scholar
  36. 36.
    Schellenberg, J.M.: CAD models for suspended and inverted microstrip. IEEE Trans., Microw. Theory Tech. 43, 1247–1252 (1995)CrossRefGoogle Scholar
  37. 37.
    Yamashita, E.: Variational method for the analysis of microstrip-like transmission line. IEEE Trans., Microw. Theory Tech. 16, 529–535 (1968)CrossRefGoogle Scholar
  38. 38.
    Chen, C.C., Hung, B.F., Chin, A., et al.: High-performance bulk and thin-film microstrip transmission lines on VLSI standard Si substrates. Microw. Optical Tech. Lett. 43, 148–151 (2004)CrossRefGoogle Scholar
  39. 39.
    Chin, A., Chan, K.T., Huang, C.H., et al.: RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulations. In: Proc. IEDM 2003, pp. 375–378 (2003)Google Scholar
  40. 40.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K., Rahal, A.: An approximate parallel-plate waveguide model of a lossy multilayered microstrip line. Microw. Opt. Tech. Lett. 45, 23–26 (2005)CrossRefGoogle Scholar
  41. 41.
    Hammerstad, E., Jensen, O.: Accurate models for microstrip computer-aided design. In: 1980 IEEE MTT-S Int. Microw. Symp. Dig., pp. 407–409 (1980)Google Scholar
  42. 42.
    Lowther, R., Lee, S.-G.: On-chip interconnect lines with patterned ground shields. IEEE Microw. Guided Wave Lett. 10, 49–51 (2000)CrossRefGoogle Scholar
  43. 43.
    Dubuc, D., De Raedt, W., Carchon, G., et al.: MEMS-IC integration for RF and millimeterwave applications. In: Proc. 13thGAAS Symp., Paris, pp. 529–532 (2005)Google Scholar
  44. 44.
    Shi, J., Kang, K., Xiong, Y.Z., et al.: Millimeter-wave passives in 45-nm digital CMOS. IEEE El. Device Lett. 31, 1080–1082 (2010)CrossRefGoogle Scholar
  45. 45.
    Quemerais, T., Moquillon, L., Fournier, J.-M., et al.: 65-, 45-, 32-nm aluminum and copper transmission line model at millimeter-wave frequencies. IEEE Trans., Microw. Theory Tech. 58, 2426–2433 (2010)CrossRefGoogle Scholar
  46. 46.
    Dib, N.I., Harokopus Jr., W.P., Katehi, L.P.B., et al.: Study of a novel planar transmission line. In: 1991 IEEE MTT-S Int. Microw. Symp. Dig., pp. 623–626 (1991)Google Scholar
  47. 47.
    Cheng, K.-K.M., Robertson, I.D.: Quasi-TEM study of microshield lines with practical cavity sidewall profiles. IEEE Trans., Microw. Theory Tech. 43, 2689–2694 (1995)CrossRefGoogle Scholar
  48. 48.
    Yuan, N., Ruan, C., Lin, W.: Analytical analyses of V, elliptic and circular-shaped microshield transmission lines. IEEE Trans., Microw. Theory Tech. 42, 855–859 (1994)CrossRefGoogle Scholar
  49. 49.
    Du, Z., Ruan, C.: Analytical analysis of circular-shaped microshield and conductor-backed coplanar waveguide. Int. J. Infrared Milli. Waves 18, 165–171 (1997)CrossRefGoogle Scholar
  50. 50.
    Jeong, A., Shin, S.-H., Go, J.-H., et al.: High-performance air-gap transmission lines and inductors for millimeter-wave applications. IEEE Trans., Microw. Theory Tech. 50, 2850–2855 (2002)CrossRefGoogle Scholar
  51. 51.
    Ponchak, G.E., Chun, D., Yook, J.-G., et al.: The use of metal filled via holes for improving isolation in LTCC RF and wireless multichip packages. IEEE Trans., Advanced Pack. 23, 88–99 (2000)CrossRefGoogle Scholar
  52. 52.
    Zhang, R., Fang, D.G., Wu, K.L., et al.: Study of the elimination of surface wave by metal fences. In: Proc. Asia-Pacific Conf. Environmental Electromagnetics, CEEM 2000, Shanghai, China, May 3-7, pp. 174–178 (2000)Google Scholar
  53. 53.
    Kim, J., Qian, Y., Feng, G., et al.: Millimeter–wave silicon MMIC interconnect and coupler using multilayer polyimide technology. IEEE Trans., Microw. Theory Tech. 48, 1482–1487 (2000)CrossRefGoogle Scholar
  54. 54.
    Ponchak, G.E., Tentzeris, E.M., Papapolymerou, J.: Coupling between microstrip line embedded in polyimide layers for 3D-MMICs on Si. In: IEE Proc., Microw. Antennas Propag., vol. 151, pp. 344–350 (October 2003)Google Scholar
  55. 55.
    Gipprich, J., Stevens, D.: A new via fence structure for cross-talk reduction in high density strip line packages. In: 2001 IEEE MTT-S Microw. Symp. Dig., pp. 1719–1722 (2001)Google Scholar
  56. 56.
    May, J.W., Rebeiz, G.M.: A 40-50-GHz SiGe 1:8 differential power divider using shielded broadside-coupled striplines. IEEE Trans., Microw. Theory Tech. 56, 1575–1581 (2008)CrossRefGoogle Scholar
  57. 57.
    Jin, J.-D., Hsu, S.S.H., Yang, M.-T., et al.: Low-loss differential semicoaxial interconnects in CMOS process. IEEE Trans., Microw. Theory Tech. 54, 4333–4340 (2006)CrossRefGoogle Scholar
  58. 58.
    Smith, C.E., Chang, R.-S.: Microstrip transmission line with finite-width dielectric. IEEE Trans., Microw. Theory Tech. 28, 90–94 (1980)CrossRefGoogle Scholar
  59. 59.
    Engel, A.G., Katehi, L.P.B.: Frequency and time domain characterization of microstrip-ridge structures. IEEE Trans., Microw. Theory Tech. 41, 1251–1262 (1993)CrossRefGoogle Scholar
  60. 60.
    Gvozdev, V.I., Kouzaev, G.A., Kulevatov, M.V.: Narrow band-pass microwave filter. Telecommun. Radio Eng. 49, 1–5 (1995)Google Scholar
  61. 61.
    Chow, Y.L., Tang, W.C.: Formulas of microstrip with a truncated substrate by synthetic asymptotes-a novel analysis technique. IEEE Trans., Microw. Theory Tech. 49, 947–953 (2001)CrossRefGoogle Scholar
  62. 62.
    Smith, C.E., Chang, R.-S.: Microstrip transmission line with finite-width dielectric and ground plane. IEEE Trans., Microw. Theory Tech. 33, 835–839 (1985)CrossRefGoogle Scholar
  63. 63.
    Six, G., Prigent, G., Rius, E., et al.: Fabrication and characterization of low-loss TFMS on silicon up to 220 GHz. IEEE Trans., Microw. Theory Tech. 53, 301–305 (2005)CrossRefGoogle Scholar
  64. 64.
    Prigent, G., Rius, E., Happy, H., et al.: Design of branch-line coupler in the G- frequency band. In: Proc. 36th Eur. Microw. Conf., pp. 1296–1299 (2006)Google Scholar
  65. 65.
    Yook, J.-M., Kim, K.-M., Kwon, Y.-S.: Air-cavity transmission lines on anodized aluminum for high-performance modules. IEEE Microw. Wireless Comp. Lett. 19, 623–625 (2009)CrossRefGoogle Scholar
  66. 66.
    Bang, Y.-S., Kim, N., Cheon, C., et al.: Fabrication of hybrid shielded-strip-line using half substrate integrated waveguide and half shielded-stripline structures. El. Lett. 47, 110–111 (2011)CrossRefGoogle Scholar
  67. 67.
    Mathaei, G., Young, L., Johnes, E.M.T.: Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House (1961)Google Scholar
  68. 68.
    Wadell, B.C.: Transmission Line Design Handbook. Artech House (1991)Google Scholar
  69. 69.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I.: Filters on multilayered microwave integrated circuits for antennas applications. In: Proc. Conf. Design and Computation of Strip Transmission Line Antennas, Sverdlovsk, Russia, pp. 72–76 (1982) (in Russian)Google Scholar
  70. 70.
    Stellary, F., Lacaita, A.L.: New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans., El. Dev. 47, 222–231 (2000)CrossRefGoogle Scholar
  71. 71.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., et al.: Physical principles of the modeling of three-dimensional microwave and extremely high-frequency integrated circuits. Soviet Physics-Uspekhi 35, 212–230 (1992)CrossRefGoogle Scholar
  72. 72.
    Kim, J.P., Jeong, C.H., Kim, C.H.: Coupling characteristics of aperture-coupled vertically mounted strip transmission line. IEEE Trans., Microw. Theory Tech. 59, 561–567 (2011)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Kim, C.S., Kim, Y.-T., Song, S.-H., et al.: A design of microstrip directional coupler for high directivity and tight coupling. In: Proc. 31st Eur. Microw. Conf., pp. 1–4 (2001)Google Scholar
  74. 74.
    Malutin, N.D.: Multicoupled Strip Structures and Circuits on their Base. Tomsk State University (1990) (in Russian)Google Scholar
  75. 75.
    Kuroki, F., Kimura, M., Yoneyma, T.: Analytical study on guided modes in vertical strip line embedded in NRD guide. El. Lett. 40(18), 1121–1122 (2004)CrossRefGoogle Scholar
  76. 76.
    Tokumitsu, T., Nishikawa, K., Kamogawa, K., et al.: Three-dimensional MMIC technology for multifunction integration and its possible application to masterslice MMIC. In: Proc. 1996 IEEE Microwave and Millimeter-Wave Monolithic Circ. Symp. Dig., pp. 85–88 (June 1996)Google Scholar
  77. 77.
    Onodera, K., Hirano, M., Tokimutsu, M., et al.: Folded U-shaped microwave technology for ultra-compact three-dimensional MMIC’s. IEEE Trans., Microw. Theory Tech. 44, 2347–2353 (1996)Google Scholar
  78. 78.
    Toyoda, F., Nishikawa, K., Tokumitsu, T., et al.: Three-dimensional Masterslice MMIC on Si substrate. IEEE Trans., Microw. Theory Tech. 45, 2524–2530 (1997)CrossRefGoogle Scholar
  79. 79.
    Svačina, W.J.: A simple quasi-static determination of basic parameters of multilayer microstrip and coplanar waveguide. IEEE Microw. Guided Wave Lett. 2, 385–387 (1992)CrossRefGoogle Scholar
  80. 80.
    Ghione, G., Goano, M.: Revisiting the partial-capacitance approach to the analysis of coplanar transmission lines on multilayered substrates. IEEE Trans., Microw. Theory Tech. 51, 2007–2014 (2003)CrossRefGoogle Scholar
  81. 81.
    Iskander, M.F., Lind, T.S.: Electromagnetic coupling of coplanar waveguides and microstrip lines to highly lossy dielectric media. IEEE Trans., Microw. Theory Tech. 37, 1910–1917 (1989)CrossRefGoogle Scholar
  82. 82.
    Ponchak, G.E., Katehi, L.P.B.: Measured attenuation of coplanar waveguide on CMOS grade silicon substrates with a polyimide interface layer. El. Lett. 34(13), 1327–1329 (1998)CrossRefGoogle Scholar
  83. 83.
    Bouchriha, F., Grenier, K., Dubuc, D., et al.: Minimization of passive circuit losses realized on low resistivity silicon using micro-machining techniques and thick polymer layers. In: 2003 IEEE MTT-S Dig., pp. 959–962 (2003)Google Scholar
  84. 84.
    Grenier, K., Lubecke, V., Bouchrihia, F., et al.: Polymers in RF and millimeter-wave applications. In: Proc. SPIE 1st Symp. Microtechnologies for New Millennium 2003, vol. 5116, pp. 502–513 (2003)Google Scholar
  85. 85.
    Schoellhorn, C., Zhao, W., Morschbach, M., et al.: Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon. IEEE Trans., El. Dev. 50, 740–746 (2003)CrossRefGoogle Scholar
  86. 86.
    Leung, L.L.W., Hon, W.-C., Chen, K.J.: Low-loss coplanar waveguides interconnects on low-resistivity silicon substrate. IEEE Trans., Comp. Pack., Techn. 27, 507–512 (2004)CrossRefGoogle Scholar
  87. 87.
    Ghione, G., Goano, M., Madonna, G., et al.: Microwave modeling and characterization of thick coplanar waveguides on oxide-coated lithium niobate substrates for electrooptical applications. IEEE Trans., Microw. Theory Tech. 47, 2287–2293 (1999)CrossRefGoogle Scholar
  88. 88.
    Gvozdev, V.I.: Use of the unbalanced slotted line in SHF microcircuits. Radioeng. Electron Physics (Radiotekhnika i Elektronika) 27(11), 42–47 (1981)Google Scholar
  89. 89.
    Gvozdev, V.I., Nefedov, E.I.: Some possibilities of three-dimensional integrated UHF structures. Sov. Phys. Dokl. 27, 959–960 (1982)Google Scholar
  90. 90.
    Gvozdev, V.I., Gulayev, Y.V., Nefedov, E.I.: Possible use of the principles of three-dimensional integrated microwave circuits in the design of ultra-fast digital computers. Sov. Phys. Dokl. 31, 760–761 (1986)Google Scholar
  91. 91.
    Gvozdev, V.I., Nefedov, E.I.: Three-Dimensional Microwave Integrated Circuits. Nauka Publ., Moscow (1985) (in Russian)Google Scholar
  92. 92.
    Gvozdev, V.I., Nefedov, E.I.: Volumetrical Microwave Integrated Circuits – Element Base of Analog and Digital Radioelectronics. Nauka Publ., Moscow (1987) (in Russian)Google Scholar
  93. 93.
    Kouzaev, G.A.: Balanced slotted line. In: Gvozdev, V.I., Nefedov, E.I. (eds.) Microwave Three-Dimensional Integrated Circuits, pp. 45–50. Nauka Publ., Moscow (1985)Google Scholar
  94. 94.
    Gvozdev, V.I., Kouzaev, G.A., et al.: Directional couplers based on transmission lines with corners. J. Commun. Techn. Electron (Radiotekhnika i Elektronika) 37, 37–40 (1992)Google Scholar
  95. 95.
    Gvozdev, V.I., Kolosov, S.A., Kouzaev, G.A., et al.: Directional coupler. USSR Invention Certificate No 1786561 dated on, February 14 (1990)Google Scholar
  96. 96.
    Kouzaev, G.A.: Electromagnetic model of differential substrate integrated waveguide. In: Proc. Eur. Computing Conf., Paris, France, April 27-29, pp. 282–284 (2011)Google Scholar
  97. 97.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K., Rahal, A.: Cavity models of planar components grounded by via-holes and their experimental verification. IEEE Trans., Microwave Theory Tech. 54, 1033–1042 (2006)CrossRefGoogle Scholar
  98. 98.
    Williams, D.F., Janezic, M.D.: QuasiTEM model for coplanar waveguide on silicon. In: Proc. El. Performance of El. Packaging 1997, IEEE 6th Topical Meeting, October 27-29, pp. 225–228 (1997)Google Scholar
  99. 99.
    Amaya, R.E., Li, M., Harrison, R.G., et al.: Coplanar waveguides in silicon with low attenuation and slow wave reduction. In: Proc. 37th Eur. Microw. Conf., pp. 508–511 (2007)Google Scholar
  100. 100.
    Bedair, S.S., Wolff, I.: Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for (M)MIC’s. IEEE Trans., Microw. Theory Tech. 40, 41–48 (1992)CrossRefGoogle Scholar
  101. 101.
    Seki, S., Hasegawa, H.: Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates. El. Lett. 17(25), 940–941 (1981)CrossRefGoogle Scholar
  102. 102.
    Wang, P., Kan, E.C.-C.: High-speed interconnects with underlayer orthogonal metal grids. IEEE Trans., Adv. Pack. 27, 497–507 (2004)CrossRefGoogle Scholar
  103. 103.
    Tiemeijer, L.F., Pijper, R.M.T., Havens, R.J., et al.: Low-loss patterned ground shield interconnect transmission lines in advanced IC processes. IEEE Trans., Microw. Theory Tech. 55, 561–570 (2007)CrossRefGoogle Scholar
  104. 104.
    Sayag, A., Ritter, D., Goren, D.: Compact modeling and comparative analysis of silicon-chip slow-wave transmission lines with slotted bottom metal ground planes. IEEE Trans., Microw. Theory Tech. 57, 840–847 (2009)CrossRefGoogle Scholar
  105. 105.
    Morton, M., Andrews, J., Lee, J., et al.: On the design and implementation of transmission lines in commercial SiGe HBT BiCMOS processes. In: Proc. 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 53–56 (2004)Google Scholar
  106. 106.
    Kaddour, D., Issa, H., Franc, A.-L., et al.: High-Q slow-wave coplanar transmission lines on 0.35 μm CMOS process. IEEE Microw. Wireless Comp. Lett. 19, 542–544 (2009)CrossRefGoogle Scholar
  107. 107.
    Levenets, V.V., Amaya, R.E., Tarr, N.G., et al.: Characterization of silver CPWs for applications in silicon MMICs. IEEE El. Device Lett. 26, 357–359 (2005)CrossRefGoogle Scholar
  108. 108.
    Tsuji, M., Shigesawa, H.: Packaging of printed-circuit lines: a dangerous cause for narrow pulse distortion. IEEE Trans., Microw. Theory Tech. 42, 1784–1790 (1994)CrossRefGoogle Scholar
  109. 109.
    Kim, S.-J., Yoon, H.-S., Lee, H.-Y.: Suppression of leakage resonance in coplanar MMIC packages using a Si sub-mount layer. IEEE Trans., Microw. Theory Tech. 48, 2664–2669 (2000)CrossRefGoogle Scholar
  110. 110.
    Horno, M., Mesa, F.L., Medina, F., et al.: Quasi-TEM analysis of multilayered, multiconductor coplanar structures with dielectric and magnetic anisotropy including substrate losses. IEEE Trans., Microw. Theory Tech. 38, 1059–1068 (1990)CrossRefGoogle Scholar
  111. 111.
    Mesa, F.L., Cano, G., Medina, F., et al.: On the quasi-TEM and full-wave approaches applied to coplanar microstrip on lossy dielectric layered media. IEEE Trans., Microw. Theory Tech. 40, 524–531 (1992)CrossRefGoogle Scholar
  112. 112.
    Collier, R.J.: Coupling between coplanar waveguides and substrate modes. In: Proc. 29th Eur. Microw. Conf., vol. 3, pp. 382–385 (1999)Google Scholar
  113. 113.
    Yip, J.G.M., Collier, R.J., Jastrzebski, A.K., et al.: Substrate modes in double-layered coplanar waveguides. In: Proc. 31st Eur. Microw. Conf., pp. 1–4 (2001)Google Scholar
  114. 114.
    Elgaid, K., Thayne, I.G., Whyte, G., et al.: Parasitic moding influences on coplanar waveguide passive components at G-band frequency. In: Proc. 36th Eur. Microw. Conf., pp. 486–488 (2006)Google Scholar
  115. 115.
    Schnieder, F., Doerner, R., Heinrich, W.: High-impedance coplanar waveguides with low attenuation. IEEE Microw. Guided Wave Lett. 6, 117–119 (1996)CrossRefGoogle Scholar
  116. 116.
    Hofschen, S., Wolff, I.: Simulation of an elevated coplanar waveguide using 2-D FDTD. IEEE Microw. Guided Wave Lett. 6, 28–30 (1996)CrossRefGoogle Scholar
  117. 117.
    Hettak, K., Stubbs, M.G., Elgaid, K., et al.: Design and characterization of elevated CPW and thin film microstrip structures for millimeter-wave applications. In: Proc. 2005 EuMW Conf., vol. 2, p. 4 (2005)Google Scholar
  118. 118.
    Agarwal, B., Schmitz, A.E., Brown, J.J., et al.: 112-GHz, 157-GHz, and 180-GHz InP HEMT traveling-wave amplifiers. IEEE Trans., Microw. Theory Tech. 46, 2553–2559 (1998)CrossRefGoogle Scholar
  119. 119.
    Yoon, S.-J., Jeong, S.-H., Yook, J.-G., et al.: A novel CPW structure for high-speed interconnects. In: 2001 IEEE MTT-S Microw. Symp. Dig., pp. 771–774 (2001)Google Scholar
  120. 120.
    Arbabian, A., Niknejad, A.M.: A tapered cascaded multi-stage distributed amplifier with 370 GHz GBM in 90nm CMOS. In: 2008 RFIC Symp., pp. 57–60 (2008)Google Scholar
  121. 121.
    Ponchak, G.E., Margomenos, A., Katehi, L.P.B.: Low-loss CPW on low-resistivity Si substrates with a micromachined interface layer for RFIC interconnects. IEEE Trans., Microw. Theory Tech. 49, 866–870 (2001)CrossRefGoogle Scholar
  122. 122.
    Sharma, R., Chakravarty, T., Bahattacharyya, A.B.: Analytical modeling of microstrip-like interconnections in presence of ground plane aperture. IET Microw. Antennas Propag. 3, 14–22 (2009)CrossRefGoogle Scholar
  123. 123.
    Ghione, G., Naldi, C.U.: Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite extent ground planes, and line-to-line coupling. IEEE Trans., Microw. Theory Tech. 35, 260–267 (1987)CrossRefGoogle Scholar
  124. 124.
    McGregor, F.A., Agharmoradi, F., Elgaid, K.: An approximate analytical model for the quasi-static parameters of elevated CPW lines. IEEE Trans., Microw. Theory Tech. 58, 3809–3814 (2010)Google Scholar
  125. 125.
    Kneppo, A., Gotzman, J.: Basic parameters of nonsymmetrical coplanar line. IEEE Trans., Microw. Theory Tech. 25, 718 (1977)CrossRefGoogle Scholar
  126. 126.
    Ghione, G., Naldi, C.: Analytical formulas for coplanar lines in hybrid and monolithic MICs. El. Lett. 20(4), 179–181 (1984)CrossRefGoogle Scholar
  127. 127.
    Frankel, M.Y., Voelker, R.H., Hilfiker, J.N.: Coplanar transmission lines on thin substrates for high-speed low-loss propagation. IEEE Trans., Microw. Theory Tech. 42, 396–402 (1994)CrossRefGoogle Scholar
  128. 128.
    Frankel, M.Y., Gupta, S., Valdmanis, J., et al.: Terahertz attenuation and dispersion characteristics of coplanar lines. IEEE Trans., Microw. Theory Tech. 39, 910–916 (1991)CrossRefGoogle Scholar
  129. 129.
    Helliger, N.M., Pfeifer, T., Vosseburger, V., et al.: Influence of insulation layers on the high-frequency properties of coplanar waveguides on Si. In: Proc. CLEO 1996, p. 452 (1996)Google Scholar
  130. 130.
    Arif, M.S., Peroulis, D.: Loss optimization of coplanar strips for CMOS RFICs. In: Proc. Microw. Conf. APMC 2009, pp. 2144–2147 (2009)Google Scholar
  131. 131.
    Deng, T.Q., Leong, M.S., Kooi, P.S., et al.: Synthesis formulas for coplanar lines in hybrid and monolithic ICs. El. Lett. 32(13), 2253–2254 (1996)CrossRefGoogle Scholar
  132. 132.
    Kim, S., Leong, S., Lee, Y.T., et al.: Ultra-wideband (from DC 110 GHz) CPW to CPS transition. El. Lett. 38(13), 622–623 (2002)CrossRefGoogle Scholar
  133. 133.
    Anagnostou, D.E., Morton, M., Papapolymerou, J., et al.: A 0-55-GHz coplanar waveguide to coplanar strip transition. IEEE Trans., Microw. Theory Tech. 56, 1–6 (1999)CrossRefGoogle Scholar
  134. 134.
    Prieto, D., Cayrout, J.C., Cazaux, J.L., et al.: CPS/CPW structure potentialities for MMICs: a CPS/CPW transition and a bias network. In: 1998 IEEE MTT-S Symp. Dig., pp. 111–114 (1998)Google Scholar
  135. 135.
    Kim, H.-T., Lee, S., Kim, S., et al.: Millimetre-wave CPS distributed analogue MMIC phase shifter. El. Lett. 39(23), 1660–1661 (2003)CrossRefGoogle Scholar
  136. 136.
    Nordquist, C.D., Muyhondt, A., Pack, M.V., et al.: An X-band to Ku-band RF MEMS switched coplanar strip filter. IEEE Microw. Wireless Comp. Lett. 14, 425–427 (2004)CrossRefGoogle Scholar
  137. 137.
    Fan, L., Chang, K.: Uniplanar power dividers using coupled CPW and asymmetrical CPS for MIC’s and MMIC’s. IEEE Trans., Microw. Theory Tech. 44, 2411–2420 (1996)CrossRefGoogle Scholar
  138. 138.
    Kwon, Y., Kim, H.T., Park, J.-H., et al.: Low-loss micromachined inverted overlay CPW lines with wide impedance ranges and inherent air bridge connection capability. IEEE Wireless Comp. Lett. 11, 59–61 (2001)CrossRefGoogle Scholar
  139. 139.
    Kolosov, S.A., Kouzaev, G.A., Skulakov, P.I., et al.: Slot transmission line. USSR Invention Certificate No 1683100 dated on, May 17 (1989)Google Scholar
  140. 140.
    Gvozdev, V.I., Kouzaev, G.A., Tikhonov, A.N.: New transmission lines and electrodynamical models for three-dimensional microwave integrated circuits. Sov. Physics-Doklady 35, 675–677 (1990)Google Scholar
  141. 141.
    Gillick, M., Robertson, I.D.: Ultra low impedance CPW transmission lines for multilayer NNIC’s. In: 1993 IEEE MTT-S Microw. Symp. Dig., pp. 145–148 (1993)Google Scholar
  142. 142.
    Vo, V.T., Krishnamurthy, L., Sun, Q., et al.: 3-D low-loss coplanar waveguide transmission lines in multilayer MMICs. IEEE Trans., Microw. Theory Tech. 54, 2864–2871 (2006)CrossRefGoogle Scholar
  143. 143.
    Dib, N.I., Katehi, L.P.B.: Impedance calculation for the microshield line. IEEE Microw. Guided Wave Lett. 2, 406–408 (1992)CrossRefGoogle Scholar
  144. 144.
    Kiang, J.-F.: Characteristic impedance of microshield lines with arbitrary shield cross section. IEEE Trans., Microw. Theory Tech. 46, 1328–1331 (1998)CrossRefGoogle Scholar
  145. 145.
    Weller, T.M., Katehi, L.P.B., Rebeiz, G.M.: High performance microshield line components. IEEE Trans., Microw. Theory Tech. 43, 534–543 (1995)CrossRefGoogle Scholar
  146. 146.
    Herrick, K.J., Yook, J.G., Katehi, L.P.B.: Microtechnology in the development of three-dimensional circuits. IEEE Trans., Microw. Theory Tech. 46, 1832–1844 (1998)CrossRefGoogle Scholar
  147. 147.
    Duwe, K., Hirch, S., Judaschke, R., et al.: Micromachined coplanar waveguides on thin HMDSN-membranes. In: Int. Conf. Infrared and Millimeterwaves 2000, Conf. Dig., pp. 299–300 (2000)Google Scholar
  148. 148.
    Duwe, K., Hirch, S., Mueller, J.: Micromachined low pass filters and coplanar waveguides for D-band frequencies based on HMDSN-membranes. In: Proc. of MSMW 2001 Symp., Kharkov, Ukraine, June 4-9, pp. 675–677 (2001)Google Scholar
  149. 149.
    Hirsh, S., Chen, Q., Duwe, K., et al.: Design and characterization of coplanar waveguides and filters on thin dielectric membranes at D-band frequencies. In: Proc. of MSMW 2001 Symp., Kharkov, Ukraine, June 4-9, pp. 678–680 (2001)Google Scholar
  150. 150.
    Margomennos, A., Herrick, K.J., Herman, M.I., et al.: Isolation in three-dimensional integrated circuits. IEEE Trans., Microw. Theory Tech. 51, 25–32 (2003)CrossRefGoogle Scholar
  151. 151.
    Duwe, K., Mueller, J.: Realization of a 150 GHz to 450 GHz tripler circuit based on a thin dielectric HMDS-N-membrane. In: 2003 MTT-S Microw. Symp. Dig., pp. 755–757 (2003)Google Scholar
  152. 152.
    Margomenos, A., Lee, Y., Katehi, L.P.B.: Wideband Si micromachined transitions for RF wafer-scale packages. In: Proc. Conf. Silicon Monolithic Integrated Circuits in RF Systems, pp. 183–186 (2007)Google Scholar
  153. 153.
    Yang, S., Hu, Z., Buchanan, N.B., et al.: Characteristics of trenched coplanar waveguide for high-resistivity Si MMIC applications. IEEE Trans., Microw. Theory Tech. 46, 623–631 (1998)CrossRefGoogle Scholar
  154. 154.
    Sahri, N., Nagatsuma, T., Mashida, K., et al.: Characterization of micromachined coplanar waveguides on silicon up to 300 GHz. In: Proc. 29th Eur. Microw. Conf., pp. 254–257 (1999)Google Scholar
  155. 155.
    Leung, L.L.W., Chen, K.J.: CAD equivalent-circuit modeling of attenuation and cross-coupling for edge-suspended coplanar waveguides on lossy silicon substrate. IEEE Trans., Microw. Theory Tech. 54, 2249–2255 (2006)CrossRefGoogle Scholar
  156. 156.
    Lin, C.-P., Jou, C.F.: New CMOS-compatible micromachined embedded coplanar waveguide. IEEE Trans., Microw. Theory Tech. 58, 2511–2516 (2010)CrossRefGoogle Scholar
  157. 157.
    Bouchriha, F., Grenier, K., Dubuc, D., et al.: Miniaturization of passive circuits losses realized on low resistivity silicon using micro-machining techniques and thick polymer layers. In: 2003 IEEE MTT-S Microw. Symp. Dig., pp. 959–962 (2003)Google Scholar
  158. 158.
    Wang, G., Bacon, A., Abdolvand, R., et al.: Finite ground coplanar lines on CMOS grade silicon with a thick embedded silicon oxide layer using micromachining techniques. In: Proc. 33rd Eur. Microw. Conf., pp. 25–27 (2003)Google Scholar
  159. 159.
    Reid, J.R., Marsh, E.D., Webster, R.T.: Micromachined rectangular-coaxial transmission lines. IEEE Trans., Microw. Theory Tech. 54, 3433–3442 (2006)CrossRefGoogle Scholar
  160. 160.
    Bishop, J.A., Hashemi, M.M., Kiziloglu, K., et al.: Monolithic coaxial transmission lines for mm-wave ICs. In: Proc. IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, pp. 252–260 (1991)Google Scholar
  161. 161.
    Chen, R.T., Brown, E.R., Singh, R.S.: A compact 30 GHz low loss balanced hybrid coupler fabricated using micromachined integrated coax. In: Proc. RAWCON 2004, pp. 227–230 (2004)Google Scholar
  162. 162.
    Reid, J.R., Marsh, E.D., Webster, R.T.: Micromachined rectangular-coaxial transmission lines. IEEE Trans., Microw. Theory Tech. 54, 3433–3442 (2006)CrossRefGoogle Scholar
  163. 163.
    Yoon, J.-B., Kim, B.-I., Choi, Y.-S., et al.: 3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology. IEEE Trans., Microw. Theory Tech. 51, 279–288 (2003)CrossRefGoogle Scholar
  164. 164.
    Filipovic, D.S., Lukic, M.V., Lee, Y., et al.: Monolithic rectangular coaxial lines and resonators with embedded dielectric support. IEEE Microw. Wireless Comp. Lett. 18, 740–742 (2008)CrossRefGoogle Scholar
  165. 165.
    Popovic, Z., Vanhille, K., Ehsan, N., et al.: Microfabricated micro-coaxial millimeter-wave components. In: Proc. 33rd Int. Conf. Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2008, pp. 1–3 (2008)Google Scholar
  166. 166.
    Ehsan, N., Cullens, E., Vanhille, K., et al.: Micro-coaxial lines for active hybrid-monolithic circuits. In: Proc. IMS 2009, pp. 465–468 (2009)Google Scholar
  167. 167.
    Ehsan, N., Vanhille, K.J., Rondineau, S., et al.: Micro-coaxial impedance transformers. IEEE Trans., Microw. Theory Tech. 58, 2908–2914 (2010)CrossRefGoogle Scholar
  168. 168.
    Saito, Y., Filipovic, D.S.: Analysis and design of monolithic rectangular coaxial lines for minimum coupling. IEEE Trans., Microw. Theory Tech. 55, 2521–2530 (2007)CrossRefGoogle Scholar
  169. 169.
    Wang, Y., Ke, M., Lancaster, M.J., et al.: Micromachined millimeter-wave rectangular-coaxial branch-line coupler with enhanced bandwidth. IEEE Trans., Microw. Theory Tech. 57, 1655–1660 (2009)CrossRefGoogle Scholar
  170. 170.
    Murad, N.A., Lancaster, M.J., Wang, Y., et al.: Micromachined rectangular coaxial line to ridge waveguide transition. In: Proc. IEEE 10th Annual Wireless Microw. Techn. Conf., WAMICON 2009, pp. 1–5 (2009)Google Scholar
  171. 171.
    Natarajan, S.P., Hoff, A.M., Weller, T.M.: Polyimide core 3D rectangular micro coaxial transmission lines. Microw. Opt. Techn. Lett., 1291–1253 (June 2010)Google Scholar
  172. 172.
    Gunston, M.A.R.: Microwave Transmission Line Impedance Data. Van Nostrand Reinhold Comp. LTD. (1972)Google Scholar
  173. 173.
    Lukic, M., Rondineau, S., Popovic, S., et al.: Modeling of realistic rectangular μ-coaxial lines. IEEE Trans., Microw. Theory Tech. 54, 2068–2076 (2006)CrossRefGoogle Scholar
  174. 174.
    Becker, J.P., East, J.R., Katehi, L.P.B.: Performance of silicon micromachined waveguide at W-band. El. Lett. 38(13), 638–639 (2002)CrossRefGoogle Scholar
  175. 175.
    Matvejev, V., De Tandt, C., Ranson, W., et al.: Wet silicon bulk micromachined THz waveguides for low-loss integrated sensor applications. In: Proc. 35th Int. Conf. Infrared Millimeter and Terahertz Waves, IRMMW-THz, pp. 1–2 (2010)Google Scholar
  176. 176.
    Komarov, V.V.: Eigenmodes of regular polygonal waveguides. J. Infrared Milli. Terahz Waves 32, 40–46 (2011)CrossRefGoogle Scholar
  177. 177.
    Kirby, P.L., Pukala, D., Manohara, H., Mehdi, I., et al.: A micromachined 400 GHz rectangular waveguide and 3-pole bandpass filter on silicon substrate. In: 2004 MTT-S Microw. Symp. Dig., pp. 1185–1188 (2004)Google Scholar
  178. 178.
    Li, Y., Kirby, P.L., Papapolymerou, J.: Silicon micromachined W-band folded and straight waveguides using DRIE technique. In: IEEE Int. Microw. Symp. Dig., pp. 1915–1918 (2006)Google Scholar
  179. 179.
    Margomenos, A., Lee, Y., Kuo, A., et al.: K and Ka-band silicon micromachined evanescent mode resonators. In: Proc. 37th Eur. Microw. Conf., pp. 446–449 (2007)Google Scholar
  180. 180.
    Li, Y., Kirby, P.L., Offranc, O., et al.: Silicon micromachined W-band hybrid coupler and power divider using DRIE technique. IEEE Microw. Wireless Comp. Lett. 18, 22–24 (2008)CrossRefGoogle Scholar
  181. 181.
    Digby, J.W., McIntosh, C.E., Parhurst, G.M., et al.: Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies. IEEE Trans., Microw. Theory Tech. 48, 1293–1302 (2000)CrossRefGoogle Scholar
  182. 182.
    Gentile, G., Dekker, R., De Graaf, P., et al.: Silicon filled integrated waveguides. IEEE Microw. Wireless Comp. Lett. 20, 536–538 (2010)CrossRefGoogle Scholar
  183. 183.
    Smith, C.H., Skavonous, A., Barker, N.S.: SU-8 micromachining of millimeter and submillimeter waveguide circuits. In: IEEE MTT-S Int. Microw. Symp., vol. 3, pp. 961–964 (2009)Google Scholar
  184. 184.
    Skaik, T., Wang, Y., Ke, M., et al.: A micromachined WR-3 waveguide with embedded bends for direct flange connections. In: Proc. 40th Eur. Microw. Conf., pp. 1225–1228 (2001)Google Scholar
  185. 185.
    Shang, X., Ke, M.L., Wang, Y., et al.: Micromachined WR-3 waveguide filter with embedded bends. El. Lett. 47(9), 545–547 (2011)CrossRefGoogle Scholar
  186. 186.
    Nordquist, C.D., Wanke, M.C., Rowen, A.M., et al.: Properties of surface metal micromachined rectangular waveguide operating near 3 THz. IEEE J. Selected Topics in Quant. Electron. 17, 130–137 (2011)CrossRefGoogle Scholar
  187. 187.
    Hirokawa, J., Ando, M.: Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Trans., Antennas Propag. 46, 625–630 (1998)CrossRefGoogle Scholar
  188. 188.
    Uchimura, H., Takenoshita, T., Fujii, M.: Development of a “laminated waveguide. IEEE Trans., Microw. Theory Tech. 46, 2438–2443 (1998)CrossRefGoogle Scholar
  189. 189.
    Wu, X.H., Kishk, A.A., Balanis, K. (ed.): Analysis and Design of Substrate Integrated Waveguide Using Efficient 2D Hybrid Method. Synthesis Lectures on Computational Electromagnetics, Series. Morgan and Claypool Publ. (2010)Google Scholar
  190. 190.
    Tischer, F.J.: Fence guide for millimeter waves. Proc. IEEE 59, 1112–1113 (1971)CrossRefGoogle Scholar
  191. 191.
    Agarwal, K.K., Tischer, F.J.: Components using fence guide for millimeter-wave applications. El. Lett. 22(6), 330–331 (1986)CrossRefGoogle Scholar
  192. 192.
    Deslandes, D., Wu, K.: Accurate modeling, wave mechanisms and design considerations of a substrate integrated waveguide. IEEE Trans., Microw. Theory Tech. 54, 2516–2526 (2006)CrossRefGoogle Scholar
  193. 193.
    Bozzi, M., Perregrini, L., Wu, K.: Modeling of radiation, conductor, and dielectric losses in SIW components by the BI-RME method. In: Proc. 3rd Eur. Microw. Integrated Circ. Conf., pp. 230–233 (2008)Google Scholar
  194. 194.
    Simpson, J.J., Taflove, A., Mix, J.A., et al.: Substrate integrated waveguides optimized for ultrahigh-speed digital interconnects. IEEE Trans., Microw. Theory Tech. 54, 1983–1989 (2006)CrossRefGoogle Scholar
  195. 195.
    Bozzy, M., Peregrini, L., Wu, K., et al.: Current and future research trends in substrate integrated circuit waveguide technology. Radioengineering 18, 201–209 (2009)Google Scholar
  196. 196.
    Wu, K.: Towards the development of terahertz substrate integrated circuit technology. In: Proc. SiRF 2010, pp. 116–119 (2010)Google Scholar
  197. 197.
    Cassivi, Y., Wu, K.: Substrate integrated nonradiative dielectric waveguide. IEEE Microw. Wireless Comp. Lett. 14, 89–91 (2004)CrossRefGoogle Scholar
  198. 198.
    Grioropoulos, N., Young, P.R.: Compact folded waveguides. In: Proc. 34th Eur. Microw. Conf., pp. 973–976 (2004)Google Scholar
  199. 199.
    Pan, B., Li, Y., Tentzeris, M.M., et al.: Surface micromachining polymer-core-conductor approach for high-performance millimeter-wave air-cavity filters integration. IEEE Trans., Microw. Theory Tech. 56, 959–970 (2008)CrossRefGoogle Scholar
  200. 200.
    Hyeon, I.-J., Park, W.-Y., Lim, S., et al.: Fully micromachined, silicon-compatible substrate integrated waveguide for millimetre-wave applications. El. Lett. 47(3), 328–330 (2011)CrossRefGoogle Scholar
  201. 201.
    Cassivi, Y., Peregrini, L., Arcioni, P., et al.: Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microw. Wireless Comp. Lett. 12, 333–335 (2002)CrossRefGoogle Scholar
  202. 202.
    Bozzy, W., Pasian, M., Perregrini, L., et al.: On the losses in substrate integrated waveguides. In: Proc. 37th Eur. Microw., Conf., pp. 384–387 (2007)Google Scholar
  203. 203.
    Che, W., Xu, L., Wang, D., et al.: Short-circuit equivalency between rectangular waveguides of regular sidewalls (rectangular waveguide) and sidewalls of cylinders (substrate-integrated rectangular waveguides), plus its extension to cavity. IET Microw. Antennas Propag. 1, 639–644 (2007)CrossRefGoogle Scholar
  204. 204.
    Salehi, M., Mehrshahi, E.: A closed-form formula for dispersion characteristics of fundamental SIW mode. IEEE Microw. Wireless Comp. Lett. 21, 4–6 (2011)CrossRefGoogle Scholar
  205. 205.
    Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A., et al.: Resonant Scattering of Waves. In: Diffraction Grids, vol. 1. Naukova Dumka (1986) (in Russian)Google Scholar
  206. 206.
    Kontorovitch, M.I., Astrakhan, M.I., Akimov, V.P., et al.: Electrodynamics of Grid Structures. Radio i Svayz, Moscow (1987) (in Russian)Google Scholar
  207. 207.
    MacFarlane, G.G.: Surface impedance of an infinite wire grid, at oblique angles of incidence (parallel polarization). J. IEE 93(IIIA), 1523–1527 (1946)Google Scholar
  208. 208.
    Wait, J.R.: The impedance of a wire grid parallel to a dielectric interface. IRE Trans., Microw. Theory Tech. 5, 99–102 (1957)MathSciNetCrossRefGoogle Scholar
  209. 209.
    Bray, J.R., Roy, L.: Resonant frequencies of post-wall waveguide cavities. IEE Proc. Microw. Antennas Propag. 150, 365–368 (2003)CrossRefGoogle Scholar
  210. 210.
    Che, W., Geng, L., Deng, K., et al.: Analysis and experiments of compact folded substrate-integrated waveguide. IEEE Trans., Microw. Theory Tech. 56, 88–93 (2008)CrossRefGoogle Scholar
  211. 211.
    Chiu, L.: Oversized microstrip line as differential guide-wave structure. El. Lett. 46(2), 144–145 (2010)CrossRefGoogle Scholar
  212. 212.
    Liu, B., Hong, W., Wang, Y.-Q., et al.: Half mode substrate integrated waveguide (HMSIW) 3-dB coupler. IEEE Microw. Wireless Comp. Lett. 17, 22–24 (2007)CrossRefGoogle Scholar
  213. 213.
    Liu, J., Long, Y.: Formulas for complex propagation constant of first higher mode of microstrip line. El. Lett. 44(4), 261–262 (2008)CrossRefGoogle Scholar
  214. 214.
    Deen, M.J., Basu, P.K.: Fundamentals and Devices. John Wiley and Sons (2012)Google Scholar
  215. 215.
    Silicon Photonics. In: Tsubebeskov, L., Lockwood, D.J., Ichikawa, M. (eds.) Proc. IEEE, Special Issue, vol. 97, pp. 1159–1360 (2009)Google Scholar
  216. 216.
    Noginov, M.A., Zhu, G., Belgrave, A.M., et al.: Demonstration of a spacer-based nanolaser. Nature, Online Publication (August 17, 2009), doi: 10.1038/nature08318Google Scholar
  217. 217.
    Zayats, A.V., Smolayninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Physics Reports 408, 131–314 (2005)CrossRefGoogle Scholar
  218. 218.
    Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRefGoogle Scholar
  219. 219.
    Furtak, T.E., Durfee, C.G., Sabbah, A.J., et al.: Toward silicon-compatible modulation of plasmonic waveguides. In: Proc. OSA/CLEO/QUELS 2008 Conf., Paper No. JThA131 (2008)Google Scholar
  220. 220.
    Chen, J., Smolaykov, G.A., Bruek, S.R.J., et al.: Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides. Optics Express 16(19), 14902–14909 (2008)CrossRefGoogle Scholar
  221. 221.
    Dionne, J.A., Lezec, H.J., Atwater, H.A.: Highly confined photon transport in subwavelength metallic slot waveguides. Nanoletters 6(9), 1928–1932 (2006)CrossRefGoogle Scholar
  222. 222.
    Shahvarpour, A., Gupta, S., Caloz, C.: Schroedinger solitons in left-handed SiO2-Ag-SiO2 and Ag-SiO2-Ag plasmonic waveguides calculated with a nonlinear transmission line approach. J. Appl. Phys. 104(1-5), 124510Google Scholar
  223. 223.
    Hosseini, A., Nieuwoudt, A., Massoud, Y.: Optimizing dielectric strip plasmonic waveguides for subwavelength on-chip optical communication. IEEE Trans., Nanotechn. 7, 189–196 (2008)CrossRefGoogle Scholar
  224. 224.
    de Waele, R., Burgos, S.P., Polman, A., et al.: Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. Nanoletters 209, 2832–2837 (2009)CrossRefGoogle Scholar
  225. 225.
    Kozina, O., Nefedov, I., Melnikov, L., et al.: Plasmonic coaxial waveguides with complex shapes of cross-sections. Materials 4, 104–116 (2011)CrossRefGoogle Scholar
  226. 226.
    Kozina, O.N., Mel’nikov, L.A., Nefedov, I.S.: Strong field localization in subwavelength metal-dielectric optical waveguides. Optics and Spectroscopy 111, 241–247 (2011)CrossRefGoogle Scholar
  227. 227.
    Park, S., Kim, M.-S., Kim, J.T., et al.: Long range surface plasmon polariton waveguides at 1.31 and 1.55 wavelength. Opt. Commun. 281, 2057–2061 (2008)CrossRefGoogle Scholar
  228. 228.
    Boltasseva, A., Nikolajesen, T., Leosson, K., et al.: Integrated optical components utilizing long-range surface plasmon polaritons. J. Ligthwave Techn. 23, 413–422 (2005)CrossRefGoogle Scholar
  229. 229.
    Ju, J.J., Kim, M.-S., Park, S., et al.: 10 Gbps optical signal transmission via long-range surface plasmon polariton waveguide. ETRI J. 29, 808–810 (2007)CrossRefGoogle Scholar
  230. 230.
    Ju, J.J., Park, S., Kim, M.-S., et al.: 40 Gbit/s light signal transmission in long-range surface plasmon waveguides. Appl. Phys. Lett. 91(1-3), 171117 (2007)CrossRefGoogle Scholar
  231. 231.
    Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., et al.: Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95(1-4), 046802 (2005)CrossRefGoogle Scholar
  232. 232.
    Moreno, E., Rodrigo, S.G., Bozhevolnyi, S.I., et al.: Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100(1-4), 023901 (2008)CrossRefGoogle Scholar
  233. 233.
    Veronis, G., Fan, S.: Modes of subwavelength plasmonic slot waveguides. J. Lightwave Techn. 25, 25 (2007)CrossRefGoogle Scholar
  234. 234.
    Dionne, J.A., Sweatlock, L.A., Atwater, H.A.: Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(1-9), 035407 (2006)CrossRefGoogle Scholar
  235. 235.
    Wuenschell, J., Kim, H.K.: Excitation and propagation of surface plasmons in a metallic nanoslit structure. IEEE Nanotechn. 7, 229–236 (2008)CrossRefGoogle Scholar
  236. 236.
    Shestopalov, Y., Shestopalov, V.: Spectral Theory and Excitation of Open Structures. Peter Peregrinus Ltd. (1996)Google Scholar
  237. 237.
    Kocabas, S.E., Veronis, G., Miller, D.A.B., et al.: Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J. Selected Topics Quant. El 14, 1462–1472 (2008)CrossRefGoogle Scholar
  238. 238.
    Boltasseva, A., Bozhevolni, S.I.: Directional couplers using long-range surface plasmon polariton waveguides. IEEE J. Selected Topics Quant. Electron 12(6), pt. 1, 1233–1241 (2005)CrossRefGoogle Scholar
  239. 239.
    Pakizeh, T., Käll, M.: Unidirectional ultracompact optical nanoantennas. Nanoletters 9, 2343–2349 (2009)CrossRefGoogle Scholar
  240. 240.
    Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., et al.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)CrossRefGoogle Scholar
  241. 241.
    Ly-Gagnon, D.-S., Kosabas, S.E., Miller, D.A.B.: Characteristic impedance model for plasmonic metal slot waveguides. IEEE J. Selected Topics Quant. Electron 14(6), 1473–1478 (2008)CrossRefGoogle Scholar
  242. 242.
    Feigenbaum, E., Orenstein, M.: Perfect 4-way plasmon splitting in cross gap waveguides intersection. IEEE Laser & Electro Optics Soc., 651–652 (October 2006)Google Scholar
  243. 243.
    Ginzburg, P., Arbel, D., Orenstein, M.: Efficient coupling of nano-plasmonics to micro-photonic circuitry. In: Proc. 2005 Conf. Lasers & Electro-Optics, CLEO, pp. 1482–1484 (2005)Google Scholar
  244. 244.
    Min, A., Ostby, E., Sorger, V., et al.: High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–459 (2009)CrossRefGoogle Scholar
  245. 245.
    Noginov, M.A., Zhu, G., Belgrave, A.M., et al.: Demonstration of a spacer-based nanolaser. Nature Online (August 16, 2009)Google Scholar
  246. 246.
    Akimov, A.V., Mukherjee, A., Yu, C.L., et al.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007)CrossRefGoogle Scholar
  247. 247.
    Johnson, P.B., Christy, R.W.: Optical constants for the noble metals. Phys. Rev. B 6, 4370–4379 (1972)CrossRefGoogle Scholar
  248. 248.
    Berglind, E., Thylen, L., Liu, L.: Microwave engineering approach to metallic based photonic waveguides and waveguide components. In: Proc. Int. Symp. Biophotonics, Nanophotonics and Metamaterials (2006)Google Scholar
  249. 249.
    Nunes, F.D., Weiner, J.: Equivalent circuits and nanoplasmonics. IEEE Trans., Nanotechn. 8, 298–302 (2009)CrossRefGoogle Scholar
  250. 250.
    Kern, A.M., Martin, O.J.F.: Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A 26, 732–740 (2009)MathSciNetCrossRefGoogle Scholar
  251. 251.
    Bozhevolnyi, S.I. (ed.): Plasmonic Nanoguides and Circuits. Pan Stanford Publishing (2009)Google Scholar
  252. 252.
    Rakheja, S., Naeemi, A.: Interconnects for novel state variables: Performance modeling and device and circuit implications. IEEE Trans., Electron. Dev. 57, 2711–2718 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunications Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations