Technologies for Microwave and High-speed Electronics

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 169)

Abstract

This Chapter is an introductory review on the contemporary technologies of manufacturing of microwave and millimeter-wave integrated circuits and their packaging. Among them are the RF and microwave laminated printed circuit boards, microwave hybrid integrated circuits, and monolithic integrations. Some attention is paid to 3-D integrations realized by different technologies. This review allows for better understanding the typical geometries of integrated circuits which is important for EM engineers and designers. References -109. Figures -19. Pages -34.

Keywords

Transmission Line Print Circuit Board Passive Component Microstrip Line Liquid Crystal Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson, I.D., Lucyszyn, S. (eds.): RFIC and MMIC Design and Technology. IEE Press (2001)Google Scholar
  2. 2.
    Liu, D., Pfeiffer, U., Grzyb, J., Gaucher, B. (eds.): Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits. Wiley (2009)Google Scholar
  3. 3.
    Harper, C.A.: Electronic Packaging and Interconnection Handbook. McGraw-Hill (2005)Google Scholar
  4. 4.
    Johansson, C.: High Frequency Electronic Packaging and Components: Characterization, Simulation, Materials and Processing, Linkøping University (2007)Google Scholar
  5. 5.
    Kuang, K., Kim, F., Gahill, S.S. (eds.): RF and Microwave Microelectronics Packaging. Springer (2009)Google Scholar
  6. 6.
    Edwards, T.C., Steer, M.B.: Foundations of Interconnects and Microstrip Design. Wiley (2000)Google Scholar
  7. 7.
    Ulrich, R.K., Schrader, L.W. (eds.): Integrated Passive Component Technology. IEEE Press (2003)Google Scholar
  8. 8.
    Tummala, R.R. (ed.): Fundamentals of Microsystems Packaging. McGraw-Hill, New York (2001)Google Scholar
  9. 9.
    Cruickshank, D.: Microwave Materials for Wireless Applications. Artech House (2011)Google Scholar
  10. 10.
    Gaynor, M.P.: System-in-Package RF Design and Applications. Artech House (2007)Google Scholar
  11. 11.
    Barret, R.M.: Microwave printed circuits-the early years. IEEE Trans., Microw. Theory Tech. 32, 983–990 (1984)CrossRefGoogle Scholar
  12. 12.
    Elshabuni-Riad, A.A.R., Barlow III, F.D.: Thin Film Technology Handbook. McGraw-Hill (1997)Google Scholar
  13. 13.
    Pitt, K.E.G. (ed.): Handbook of Thick Film Technology. Electrochemical Publications, Port Eirin (2005)Google Scholar
  14. 14.
    Volman, V.I. (ed.): Handbook on the Calculation and Design of Microwave Strip Circuits. Radio i Svayz Publ. Comp, Moscow (1982) (in Russian)Google Scholar
  15. 15.
    Imanaka, Y.: Multilayered Low Temperature Cofired Ceramics (LTCC) Technology. Springer (2010)Google Scholar
  16. 16.
    Deen, M.J. (ed): Silicon Based Millimeter-wave Technology. Submitted to Elsevier (2012)Google Scholar
  17. 17.
    Mcquiddy Jr., D.N., Wassel, J.W., LaGrange, J.B., et al.: Monolithic microwave integrated circuits: An historical perspective. IEEE Trans., Microw. Theory Tech. 32, 997–1008 (1984)CrossRefGoogle Scholar
  18. 18.
    Niehenke, E.C., Pucel, R.A., Bahl, I.J.: Microwave and millimeter-wave integrated circuits. IEEE Trans., Microw. Theory Tech. 50, 846–857 (2002)CrossRefGoogle Scholar
  19. 19.
    Sobol, H., Tomiyasu, K.: Milestones of microwaves. IEEE Trans., Microw. Theory Tech. 50, 594–611 (2002)CrossRefGoogle Scholar
  20. 20.
    Sorrentino, R., Oxley, T., Salmer, G., et al.: Microwaves in Europe. IEEE Trans., Microw. Theory Tech. 50, 1056–1071 (2002)CrossRefGoogle Scholar
  21. 21.
    Lau, J.H., Lee, S.W.R.: Microvias for Low Cost, High Density Interconnects. McGraw-Hill (2001)Google Scholar
  22. 22.
    Wong, B.P., Mittal, A., Cao, Y., Starr, G.: Nano-CMOS Circuits and Physical Design. Wiley Interscience (2005)Google Scholar
  23. 23.
    Bakir, M.S., Meindi, J.D. (eds.): Integrated Interconnect Technologies for 3D Nanoelectronic Systems. Artech House (2009)Google Scholar
  24. 24.
    Crawley, D., Nikolić, K., Forshaw, M. (eds.): 3D Nanoelectronic Computer Architects and Implementation. IOP Publ (2005)Google Scholar
  25. 25.
    Ryzhii, M., Ryzhii, V. (eds.): Physics and Modeling of Tera- and Nanodevices. Imperial College Press (2008)Google Scholar
  26. 26.
    Palm, P., Tuominen, R., Kivikero, A.: Integrated Module Board (IMB); an advanced manufacturing technology for embedding active components inside organic substrate. In: Proc. 54th IEEE Conf. Electronic Components and Technology, vol. 2, pp. 1227–1231 (2004)Google Scholar
  27. 27.
    Thompson, D., Tantot, O., Jallageas, H., et al.: Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30-110 GHz. IEEE Trans., Microw. Theory Tech. 52, 1343–1352 (2004)CrossRefGoogle Scholar
  28. 28.
    Gvozdev, V.I.: Use of the unbalanced slotted line in SHF microcircuits. Radioeng. Electron Physics (Radiotekhnika i Elektronika) 27(11), 42–47 (1981)Google Scholar
  29. 29.
    Gvozdev, V.I., Nefedov, E.I.: Some possibilities of three-dimensional integrated UHF structures. Sov. Phys. Dokl. 27, 959–960 (1982)Google Scholar
  30. 30.
    Gvozdev, V.I., Gulayev, Y.V., Nefedov, E.I.: Possible use of the principles of three-dimensional integrated microwave circuits in the design of ultra-fast digital computers. Sov. Phys. Dokl. 31, 760–761 (1986)Google Scholar
  31. 31.
    Gvozdev, V.I., Nefedov, E.I.: Three-Dimensional Microwave Integrated Circuits. Nauka Publ., Moscow (1985) (in Russian)Google Scholar
  32. 32.
    Gvozdev, V.I., Nefedov, E.I.: Volumetrical Microwave Integrated Circuits–Element Base of Analog and Digital Radioelectronics. Nauka Publ., Moscow (1987) (in Russian)Google Scholar
  33. 33.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., et al.: Physical principles of the modeling of three-dimensional microwave and extremely high-frequency integrated circuits. Soviet Physics-Uspekhi 35, 212–230 (1992)CrossRefGoogle Scholar
  34. 34.
    Kouzaev, G.A., Deen, M.J.: 3D-integrated circuits. Part. 1. High-frequency 3D-hybrid ICs. An analytical review. Microelectronics Res. Lab. Report, McMaster University, Canada (2002)Google Scholar
  35. 35.
    Bykov, D.V., Vorob’evsky, E.M., Gvozdev, V.I., Kouzaev, G.A., et al.: Technology for three-dimensional microwave integrated circuits. Zarubezhnaya Radioelektronika (Foreign Radio Electronics) (11), 49–65 (1992) (in Russian)Google Scholar
  36. 36.
    Nefedov, E.I., Fialkovskyi, A.T.: Strip Transmission Lines: Electromagnetic Basics of the CAD of Microwave Integrated Circuits. Nauka (1980) (in Russian)Google Scholar
  37. 37.
    Neganov, V.A.: Physical Regularization of Ill-posed Problems of Electrodynamics. Science-Press (2008) (in Russian)Google Scholar
  38. 38.
    Nikolskyi, V.V. (ed.): Computer Aided Design of Microwave Devices. Nauka (1980) (in Russian)Google Scholar
  39. 39.
    Nikolskyi, V.V., Nikolskaya, T.A.: Electrodynamics and Radio Wave Propagation. Nauka (1986) (in Russian)Google Scholar
  40. 40.
    Nikolskyi, V.V., Nikolskaya, T.A.: Decomposition Approach to Electrodynamics Problems. Nauka (1983) (in Russian) Google Scholar
  41. 41.
    Golovanov, Makeeva, G.S.: Simulations of Electromagnetic Wave Interactions with Nano-grids in Microwave and Terahertz Frequencies. Nauka (2011) (in print) (in Russian)Google Scholar
  42. 42.
    Shestopalov, Y., Shestopalov, V.: Spectral Theory and Excitation of Open Structures. Peter Peregrinus Ltd. (1996)Google Scholar
  43. 43.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K.: A parallel-plate waveguide model of lossy microstrip transmission line. IEEE Microw. Wireless Comp. Lett. 15, 27–29 (2005)CrossRefGoogle Scholar
  44. 44.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K., Rahal, A.: An approximate parallel-plate waveguide model of a lossy multilayered microstrip line. Microw. Opt. Tech. Lett. 45, 23–26 (2005)CrossRefGoogle Scholar
  45. 45.
    Kouzaev, G.A., Kurushin, E.P., Neganov, V.A.: Numerical calculations of a slot-transmission line. In: Izv. Vysshikh Utchebnykh Zavedeniy Radiofizika (Radiophysics), vol. 23, pp. 1041–1042 (1981) (in Russian)Google Scholar
  46. 46.
    Kouzaev, G.A.: Quasistatic model of ribbed nonsymmetrical slotted line. Radio Eng. Electron. Phys. 28, 137–138 (1983)Google Scholar
  47. 47.
    Kouzaev, G.A.: Balanced slotted line. In: Gvozdev, V.I., Nefedov, E.I. (eds.) Microwave Three-Dimensional Integrated Circuits, pp. 45–50. Nauka Publ., Moscow (1985) (Invited Chapter, in Russian)Google Scholar
  48. 48.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I.: Balanced slotted line. Theory and experiment. Radio Eng. Electron. Physics (Radiotekhnika i Elektronika) 30, 1050–1057 (1985)Google Scholar
  49. 49.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., Utkin, M.I.: Electrodynamical calculation of microwave volume integrated circuit components based on a balanced slotted line. J. Commun. Techn. Electronics (Radiotekhnika i Electronika) 33, 39–43 (1989)Google Scholar
  50. 50.
    Gvozdev, V.I., Kouzaev, G.A., et al.: A fin-slot line: theory, experiment, and structures. J. Commun. Technology and Electronics (Radiotekhnika i Elektronika) 35, 81–85 (1990)Google Scholar
  51. 51.
    Gvozdev, V.I., Kouzaev, G.A., Pozhydaev, E.D., et al.: Asymmetrical slot transmission line. USSR Invention Certificate No 1730692 dated on, August 22 (1989)Google Scholar
  52. 52.
    Gvozdev, V.I., Kouzaev, G.A., et al.: Topological models of the natural modes in coupled corner transmission lines. J. Commun. Techn. Electron (Radiotekhnika i Elektronika) 37, 48–54 (1992)Google Scholar
  53. 53.
    Gvozdev, V.I., Kouzaev, G.A., et al.: Directional couplers based on transmission lines with corners. J. Commun. Techn. Electron (Radiotekhnika i Elektronika) 37, 37–40 (1992)Google Scholar
  54. 54.
    Gvozdev, V.I., Kolosov, S.A., Kouzaev, G.A., et al.: Directional coupler. USSR Invention Certificate No 1786561 dated on, February 14 (1990)Google Scholar
  55. 55.
    Kolosov, S.A., Kouzaev, G.A., Skulakov, P.I., et al.: Slot transmission line. USSR Invention Certificate No 1683100 dated on, May 17 (1989)Google Scholar
  56. 56.
    Gvozdev, V.I., Kouzaev, G.A., Kulevatov, M.V.: Narrow band-pass microwave filter. Telecommun. Radio Eng. 49, 1–5 (1995)Google Scholar
  57. 57.
    Gvozdev, V.I., Kouzaev, G.A., Tikhonov, A.N.: New transmission lines and electrodynamical models for three-dimensional microwave integrated circuits. Sov. Physics-Doklady 35, 675–677 (1990)Google Scholar
  58. 58.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., et al.: Slot transmission line. USSR Invention Certificate No 1626281 dated on, March 31 (1989)Google Scholar
  59. 59.
    Gvozdev, V.I., Kouzaev, G.A.: Physics and field topology of 3-D microwave circuits. Soviet Microelectronics 21, 1–17 (1992)Google Scholar
  60. 60.
    Kouzaev, G.A.: Electromagnetic model of differential substrate integrated waveguide. In: Proc. Eur. Computing Conf., Paris, France, April 27-29, pp. 282–284 (2011)Google Scholar
  61. 61.
    Kouzaev, G.A.: Oscillations of cylindrical ferrite resonators covered by a thick semiconductor layer. In: Electromagnetic Fundamentals for the CAD of Microwave Integrated Circuits, pp. 56–64. USSR Acad. Sci, Moscow (1981) (in Russian)Google Scholar
  62. 62.
    Kouzaev, G.A., Nikolova, N.K., Deen, M.J.: Circular-pad via model based on cavity field analysis. IEEE Microw. Wireless Lett. 13, 481–483 (2003)CrossRefGoogle Scholar
  63. 63.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K., Rahal, A.: Influence of eccentricity on the frequency limitations of circular-pad via-holes. IEEE Microw. Wireless Lett. 14, 265–267 (2004)CrossRefGoogle Scholar
  64. 64.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K., Rahal, A.: Cavity models of planar components grounded by via-holes and their experimental verification. IEEE Trans., Microwave Theory Tech. 54, 1033–1042 (2006)CrossRefGoogle Scholar
  65. 65.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., Fomina, L.M.: Band-pass filter. USSR Invention Certificate, No 1185440 dated on, October 1 (1982)Google Scholar
  66. 66.
    Tokumitsu, T., Nishikawa, K., Kamogawa, K., et al.: Three-dimensional MMIC technology for multifunction integration and its possible application to masterslice MMIC. In: Proc. 1996 IEEE Microwave and Millimeter-Wave Monolithic Circ. Symp. Dig., pp. 85–88 (June 1996)Google Scholar
  67. 67.
    Onodera, K., Hirano, M., Tokimutsu, M., et al.: Folded U-shaped microwave technology for ultra-compact three-dimensional MMIC’s. IEEE Trans., Microw. Theory Tech. 44, 2347–2353 (1996)Google Scholar
  68. 68.
    Toyoda, F., Nishikawa, K., Tokumitsu, T., et al.: Three-dimensional Masterslice MMIC on Si substrate. IEEE Trans., Microw. Theory Tech. 45, 2524–2530 (1997)CrossRefGoogle Scholar
  69. 69.
    Gvozdev, V.I., Kouzaev, G.A., Podkovyrin, S.I.: Microwave volume-metrical monolithic integrated circuits. In: Proc. Trans. Black Sea Region Symp. Appl. Electromagnetism, Metsovo, Epirus-Hellas, Athens, Greece, April 17-19, p. 173 (1996)Google Scholar
  70. 70.
    Happich, J.: Nanometer-thin film enables highest permittivity capacitors. In: EETimes Europe, January 4 (2012)Google Scholar
  71. 71.
    Heydari, B., Bohsali, M., Adabi, E., et al.: Milimeter-wave devices and circuit blocks up to 104 GHz in 90 nm CMOS. IEEE J. Solid-State Circ. 42, 2893–2903 (2007)CrossRefGoogle Scholar
  72. 72.
    Guckel, H., Brennan, P.A., Paloscz, I.: A parallel-plate waveguide approach to micro-miniaturized, planar transmission lines for integrated circuits. IEEE Trans., Microw. Theory Tech. 15, 468–476 (1967)CrossRefGoogle Scholar
  73. 73.
    Hasegawa, H., Furukawa, M., Yanai, H.: Properties of microstrip line on Si-SiO2 system. IEEE Trans., Microw. Theory Tech. 19, 869–881 (1971)CrossRefGoogle Scholar
  74. 74.
    Demeester, T., De Zutter, D.: Quasi-TM-transmission line parameters of coupled lossy lines based on the Dirichlet to Neumann boundary operator. IEEE Trans., Microw. Theory Tech. 56, 1649–1659 (2008)CrossRefGoogle Scholar
  75. 75.
    Al-Sarawi, S.F., Abbot, D., Franzon, P.D.: A review of 3-D packaging technology. IEEE Trans., Comp. Pack., Manuf. Techn.-Part B 21, 2–14 (1998)CrossRefGoogle Scholar
  76. 76.
    3-D Integration technologies. In: Maurelli, D., Belot, D., Camparado, G. (eds.) Proc. IEEE, vol. 97, pp. 1–193 (2009)Google Scholar
  77. 77.
    Varadan, V.K., Jiang, X., Varadan, V.V.: Microstereolithography and other Fabrication Techniques for 3D MEMS. Wiley (2001)Google Scholar
  78. 78.
    Herrick, K.J., Yook, J.-G., Katehi, L.P.B.: Microtechnology in the development of three-dimensional circuits. IEEE Trans., Microw. Theory Tech. 46, 1832–1844 (1998)CrossRefGoogle Scholar
  79. 79.
    Margomenos, A., Herrik, K.J., Herman, M.I., et al.: Isolation in three-dimensional integrated circuits. IEEE Trans., Microw. Theory Tech. 51, 25–32 (2009)CrossRefGoogle Scholar
  80. 80.
    Sercel, J.P.: Ultraviolet laser-based MOEMS and MEMS micromachining. An alternative to wet processing. In: Advanced Packaging, pp. 29–31 (April 2004)Google Scholar
  81. 81.
    Guckel, H.: High-aspect-ratio micromachining via deep X-ray lithography. Proc. IEEE 86, 1586–1593 (1998)CrossRefGoogle Scholar
  82. 82.
    Cohen, A., et al.: EFAB: rapid, low-cost desktop micromachining of high-aspect ratio true 3-D MEMS. In: Proc. IEEE MEMS, pp. 244–251 (1999)Google Scholar
  83. 83.
    Reid, J.R., Marsh, E.D., Webster, R.T.: Micromachined rectangular-coaxial transmission lines. IEEE Trans., Microw. Theory Tech. 54, 3433–3442 (2006)CrossRefGoogle Scholar
  84. 84.
    Yoon, J.-B., Kim, B.-I., Choi, Y.-S., et al.: 3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology. IEEE Trans., Microw. Theory Tech. 51, 279–288 (2003)CrossRefGoogle Scholar
  85. 85.
    Wang, Y., Ke, M., Lancaster, M.J., et al.: Micromachined millimeter-wave rectangular-coaxial branch-line coupler with enhanced bandwidth. IEEE Trans., Microw. Theory Tech. 57, 1655–1660 (2000)CrossRefGoogle Scholar
  86. 86.
    Akinwande, D., Yasuda, S., Paul, B., et al.: Monolithic integration of CMOS VLSI and carbon nanotubes for hybrid nanotechnology applications. IEEE Trans., Nanotechn. 7, 636–639 (2008)CrossRefGoogle Scholar
  87. 87.
    Lu, J.-Q.: 3-D hyperintegration and packaging technologies for micro-nanosystems. Proc. IEEE 97, 18–30 (2009)CrossRefGoogle Scholar
  88. 88.
    Heinrich, W.: The flip-chip approach for millimeter-wave packaging. In: IEEE Microw. Mag., pp. 36–45 (September 2005)Google Scholar
  89. 89.
    Jentzsch, A., Heinrich, W.: Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz. IEEE Trans., Microw. Theory Tech. 49, 871–877 (2001)CrossRefGoogle Scholar
  90. 90.
    Herman, M.I., Lee, K.A., Kolawa, E.A., et al.: Novel techniques for millimeter-wave packages. IEEE Trans., Microw. Theory Tech. 43, 1516–1523 (1995)CrossRefGoogle Scholar
  91. 91.
    Egorov, V.N., Maslov, V.L., Nefyodov, Y.A., et al.: Dielectric constant, loss tangent and surface resistance of PCB materials at K-band frequencies. IEEE Trans., Microw. Theory Tech. 53, 627–635 (2005)CrossRefGoogle Scholar
  92. 92.
    Henderson, R.M., Katehi, L.P.B.: Silicon based micromachined packages for high-frequency applications. IEEE Trans., Microw. Theory Tech. 47, 1563–1569 (1999)CrossRefGoogle Scholar
  93. 93.
    Min, B.-W., Rebeiz, G.M.: A low-loss silicon-on-silicon DC-110-GHz resonance-free package. IEEE Trans., Microw. Theory Tech. 54, 710–716 (2006)CrossRefGoogle Scholar
  94. 94.
    Lim, J., Kim, G., Hwang, S.: Suppression of microwave resonances in wirebond transitions between conductor-backed coplanar waveguides. IEEE Microw. Wireless Comp. Lett. 18, 31–33 (2008)CrossRefGoogle Scholar
  95. 95.
    Masuda, S., Takahashi, T., Joshin, K.: An over-110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission system. IEEE J. Solid-State Cir. 38, 1479–1484 (2003)CrossRefGoogle Scholar
  96. 96.
    Song, Y.K., Lee, C.C.: Millimeter-wave coplanar strip (CPS) line flip chip packaging on PCBs. In: Proc. 2005 El. Comp. Techn. Conf., pp. 1807–1813 (2005)Google Scholar
  97. 97.
    Chu, K.-M., Choi, J.-H., Lee, J.-S., et al.: Optoelectronic and microwave transmission characteristics of indium solder bumps for low-temperature flip-chip applications. IEEE Trans., Adv. Pack. 29, 409–414 (2006)CrossRefGoogle Scholar
  98. 98.
    Kangasvieri, T., Komulainen, M., Jantunen, H., et al.: Low-loss and wideband package transitions for microwave and millimeter-wave MCMs. IEEE Trans., Adv. Pack. 31, 170–181 (2006)CrossRefGoogle Scholar
  99. 99.
    Lee, B.-W., Tsai, J.-Y., Jin, H., et al.: New 3-D chip stacking architectures by wire-on-bump and bump-on-flex. IEEE Trans., Adv. Pack. 31, 367–376 (2008)CrossRefGoogle Scholar
  100. 100.
    Bernstein, G.H., Liu, Q., Yan, M., et al.: Quilt packaging: high-density, high-speed interchip communications. IEEE Trans., Adv. Pack. 30, 731–740 (2007)CrossRefGoogle Scholar
  101. 101.
    Cauwe, M., De Baets, J.: Broadband material parameter characterization for practical high-speed interconnects on printed circuit board. IEEE Trans., Adv. Pack. 31, 649–656 (2008)CrossRefGoogle Scholar
  102. 102.
    Morcillo, C.D., Bhattacharya, S.K., Horn, A., et al.: Thermal stability of the dielectric properties of the low-loss, organic material RT/Duroid 6002 from 30 GHz to 70 GHz. In: Proc. 2010 El. Comp. Techn. Conf., pp. 1830–1833 (2010)Google Scholar
  103. 103.
    Vyas, R., Rida, A., Bhattacharya, S.K., et al.: Liquid crystal polymer (LCP): The ultimate solution for low cost RF flexible electronics and antennas. In: Proc. IEEE APS Int. Symp., pp. 1729–1732 (2007)Google Scholar
  104. 104.
    McGrath, M.P., Aihara, K., Chen, M.J., et al.: Liquid crystal polymer for RF and millimeter-wave multi-layer hermetic packages and modules. In: Kuang, K., et al. (eds.) RF and Microwave Microelectronics Packaging, ch. 5, pp. 91–113. Springer Science + Business Media, LLC (2010)CrossRefGoogle Scholar
  105. 105.
    Janezic, M.D., Williams, D.F., Blaschke, V., et al.: Permittivity characterization of low-k thin films from transmission-line method. IEEE Trans., Microw. Theory Tech. 51, 132–136 (2003)CrossRefGoogle Scholar
  106. 106.
    Costanzo, S., Venneri, I., Di Massa, G., et al.: Benzocyclobutene as substrate material for planar millimeter-wave structures: dielectric characterization and application. J. Infrared Milli Terahz Waves 31, 66–77 (2010)Google Scholar
  107. 107.
    Zwick, T., Chandrasekhar, A., Baks, C.W., et al.: Determination of the complex permittivity of packaging materials at millimeter-wave frequencies. IEEE Trans., Microw. Theory Tech. 54, 1001–1010 (2006)CrossRefGoogle Scholar
  108. 108.
    Lopez, A.L.V., Bhattacharya, S.K., Morcillo, C.A.D.: Novel low loss thin film materials for wireless 60 GHz application. In: Proc. 2010 El. Comp. Techn. Conf., pp. 1990–1995 (2010)Google Scholar
  109. 109.
    Cruickshank, D.: Microwave Materials for Wireless Applications. Artech House (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunications Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations