Theory of Waveguides

  • Guennadi A. Kouzaev
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 169)


The analytical and numerical models and methods of waveguides and integrated transmission lines are reviewed in this Chapter. Among them are the separation of the variables method and the transverse resonance one. Engineering formulas obtained by the conformal technique for most used integrated transmission lines are given and the accuracy of them are considered. The strong numerical EM methods are represented here by the finite difference time domain techniques, transmission line matrix method, finite element method, and the integral equation models of transmission lines. There are 101 references given for the Readers who wish to obtain more knowledge on the EM theory of waveguides and transmission lines. 17 figures are included into the text of 43 pages to explain the waveguides and integrated transmission lines.


Transmission Line Finite Difference Time Domain Microstrip Line Coplanar Waveguide Slot Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw Hill Co. (1953)Google Scholar
  2. 2.
    Miller, W.: Symmetry and Separation of Variables. Addison-Wesley (1977)Google Scholar
  3. 3.
    Balanis, C.A.: Advanced Engineering Electromagnetics. John Wiley (1989)Google Scholar
  4. 4.
    Sadiku, M.N.O.: Numerical Techniques in Electromagnetics. CRC Press (2001)Google Scholar
  5. 5.
    Garg, R.: Analytical and Computational Methods in Electromagnetics. Artech House (2009)Google Scholar
  6. 6.
    Felsen, L.B., Marcuvitz, N.: Radiation and Scattering of Waves. Prentice-Hall (1973)Google Scholar
  7. 7.
    Walter, C.H.: Traveling Wave Antennas. Dover Publ, N.Y (1970, 1965)Google Scholar
  8. 8.
    Bates, B.D., Staines, G.W.: Transverse Resonance Analysis Technique for Microwave and Millimeter-wave Circuits, DSTO-RR-0027, Dept. of Defence, USA (1995)Google Scholar
  9. 9.
    Gibbs, W.J.: Conformal Transformations in Electrical Engineering. Chapman & Hall, London (1958)zbMATHGoogle Scholar
  10. 10.
    Wheeler, H.A.: Transmission-line properties of parallel wide strips by a conformal mapping approximation. IEEE Trans., Microw. Theory Tech. 12, 280–289 (1964)CrossRefGoogle Scholar
  11. 11.
    Wheeler, H.A.: Transmission-line properties of parallel strips separated by a dielectric sheet. IEEE Trans., Microw. Theory Tech. 13, 172–185 (1965)CrossRefGoogle Scholar
  12. 12.
    Cohn, S.B.: Characteristic impedance of the shielded strip transmission line. IRE Trans., Microw. Theory Tech. 2, 52–57 (1954)CrossRefGoogle Scholar
  13. 13.
    Gupta, K.C., Garg, R., Bahl, I.J.: Microstrip Lines and Slot Lines. Artech House Inc., Dedham (1979)Google Scholar
  14. 14.
    Wadell, B.C.: Transmission Line Design Handbook. Artech House (1991)Google Scholar
  15. 15.
    Mathaei, G., Young, L., Johnes, E.M.T.: Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House (1980)Google Scholar
  16. 16.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I.: Filters on multilayered microwave integrated circuits for antennas applications. In: Proc. Conf. Design and Computation of Strip Transmission Line Antennas, Sverdlovsk, Russia, pp. 72–76 (1982) (in Russian)Google Scholar
  17. 17.
    May, J.W., Rebeiz, G.M.: A 40-50-GHz SiGe 1:8 differential power divider using shielded broadside-coupled striplines. IEEE Trans., Microw. Theory Tech. 56, 1575–1581 (2008)CrossRefGoogle Scholar
  18. 18.
    Chirala, M.K., Nguen, C.: Multilayer design techniques for extremely miniaturized CMOS microwave and millimeter-wave distributed passive circuits. IEEE Trans., Microw. Theory Tech. 54, 4218–4224 (2006)CrossRefGoogle Scholar
  19. 19.
    Chirala, M.K., Guan, X., Nguyen, C.: Integrated multilayered on-chip inductors for compact CMOS RFICs and their use in a miniature distributed low-noise-amplifier design for ultra-wideband applications. IEEE Trans., Microw. Theory Tech. 56, 1783–1789 (2008)CrossRefGoogle Scholar
  20. 20.
    Oliner, A.A.: Equivalent circuits for discontinuities in balanced strip transmission line. IRE Trans. 3, 134–143 (1955)CrossRefGoogle Scholar
  21. 21.
    Menzel, W., Wolff, I.: A method for calculating the frequency-dependent properties of microstrip discontinuities. IEEE Trans., Microw. Theory Tech. 25, 107–112 (1977)CrossRefGoogle Scholar
  22. 22.
    Hammerstad, E., Jensen, O.: Accurate models for microstrip computer-aided design. In: 1980 IEEE MTT-S Int. Microw. Symp. Dig., pp. 407–409 (1980)Google Scholar
  23. 23.
    Asbesh, C.B., Garg, R.: Conformal mapping analysis of microstrip with finite strip thickness. In: Proc. APSYM 2006, Dept. of Electronics, CUSAT, India, December 14-16, pp. 27–30 (2006)Google Scholar
  24. 24.
    Wolff, I., Kompa, G., Mehran, R.: Calculation method for microstrip discontinuities and T-junctions. El. Lett. 8, 177–179 (1972)CrossRefGoogle Scholar
  25. 25.
    Getsinger, W.: Microstrip dispersion model. IEEE Trans., Microw. Theory Tech. 21, 34–39 (1973)CrossRefGoogle Scholar
  26. 26.
    Carlin, H.J.: A simplified circuit model for microstrip. IEEE Trans., Microw. Theory Tech. 21, 589–591 (1973)CrossRefGoogle Scholar
  27. 27.
    Kobayashi, M.: A dispersion formula satisfying recent requirements in microstrip lines. IEEE Trans., Microw. Theory Tech. 36, 1246–1250 (1988)CrossRefGoogle Scholar
  28. 28.
    Nefeodov, E.I., Fialkovskyi, A.T.: Strip Transmission Lines. Nauka, Moscow (1980) (in Russian)Google Scholar
  29. 29.
    Pramanick, P., Bharatia, P.: A new microstrip dispersion model. IEEE Trans., Microw. Theory Tech. 32, 1379–1384 (1984)CrossRefGoogle Scholar
  30. 30.
    Verma, A.K., Kumar, R.: New empirical unified dispersion model for shielded-, suspended-, and composite-substrate microstrip line for microwave and mm-wave applications. IEEE Trans., Microw. Theory Tech. 46, 1187–1192 (1998)CrossRefGoogle Scholar
  31. 31.
    Yamashita, E., Atsuki, K., Hirahata, T.: Microstrip dispersion in a wide-frequency band. IEEE Trans., Microw. Theory Tech. 29, 610–611 (1981)CrossRefGoogle Scholar
  32. 32.
    Hoffmann, R.K.: Handbook of Microwave Integrated Circuits. Artech House (1987)Google Scholar
  33. 33.
    Kompa, G.: Practical Microstrip Design and Applications. Artech House (2005)Google Scholar
  34. 34.
    Schevchenko, V.V.: Continuous Transitions in Open Waveguides (Electromagnetics). Golem Press (1972)Google Scholar
  35. 35.
    Oliner, A.A., Lee, K.S.: The nature of the leakage from higher modes on microstrip line. In: 1986 IEEE MTT-S Dig., pp. 57–60 (1986)Google Scholar
  36. 36.
    Michalski, K.A., Zheng, D.: Rigorous analysis of open microstrip lines of arbitrary cross-section in bound and leaky regimes. In: 1989 IEEE MTT-S Dig., pp. 787–790 (1989)Google Scholar
  37. 37.
    Ngihiem, D., Williams, J.T., Jackson, D.R., Oliner, A.A.: Existence of a leaky dominant mode on microstrip line with an isotropic substrate: Theory and measurement. In: 1993 IEEE MTT-S Dig., pp. 1291–1294 (1993)Google Scholar
  38. 38.
    Bagby, J.S., Lee, C.-H., Nyquist, D.P., Yuan, Y.: Identification of propagation regimes on integrated microstrip transmission lines. IEEE Trans., Microw. Theory Tech. 41, 1881–1894 (1993)CrossRefGoogle Scholar
  39. 39.
    Liu, J., Jackson, D.R., Liu, P., et al.: The propagation wavenumber for microstrip line in the first higher-order mode. In: ICMMT 2010 Proc., pp. 965–968 (2010)Google Scholar
  40. 40.
    van de Capelle, A.R., Luypaert, P.J.: Fundamental- and higher-order modes in open microstrip lines. El. Lett. 9(15), 345–346 (1973)CrossRefGoogle Scholar
  41. 41.
    Chen, S.-D., Tzuang, C.K.C.: Characteristic impedance and propagation of the first higher order microstrip mode in frequency and time domain. IEEE Trans., Microw. Theory Tech. 50, 1370–1379 (2002)CrossRefGoogle Scholar
  42. 42.
    Chiu, L.: Oversized microstrip line as differential guided-wave structure. El. Lett. 46(2), 144–145 (2010)CrossRefGoogle Scholar
  43. 43.
    Nefeodov, E.I.: Technical Electrodynamics. Academia Publ., Moscow (2008) (in Russian)Google Scholar
  44. 44.
    Liu, J., Long, Y.: Formulas for complex propagation constant of first higher mode of microstrip line. El. Lett. 44, 261–262 (2008)CrossRefGoogle Scholar
  45. 45.
    Rizzoli, V.: A unified variational solution to microstrip array problems. IEEE Trans., Microw. Theory Tech. 23, 223–234 (1975)CrossRefGoogle Scholar
  46. 46.
    Garg, R., Bhal, I.J.: Characteristics of coupled microstriplines. IEEE Trans., Microw. Theory Tech. 27, 700–705 (1979)CrossRefGoogle Scholar
  47. 47.
    Bedair, S.S., Sobhy, M.I.: Accurate formulas for computer-aided design of shielded microstrip lines. In: IEE Proc., vol. 127, pt. H, pp. 305–308 (December 1980)Google Scholar
  48. 48.
    Wan, C.: Analytically and accurately determined quasi-static parameters of coupled lines. IEEE Trans., Microw. Theory Tech. 44, 75–80 (1996)CrossRefGoogle Scholar
  49. 49.
    Abbosh, A.M.: Analytical closed-form solutions for different configurations of parallel-coupled microstrip lines. IET Microw. Antennas Propag. 3, 137–147 (2009)CrossRefGoogle Scholar
  50. 50.
    Carlin, H.J., Civalleri, P.P.: A coupled-line model for dispersion in parallel-coupled microstrips. IEEE Trans., Microw. Theory Tech. 23, 444–446 (1975)CrossRefGoogle Scholar
  51. 51.
    Tripathi, V.K.: A dispersion model for coupled microstrips. IEEE Trans., Microw. Theory Tech. 34, 66–71 (1986)CrossRefGoogle Scholar
  52. 52.
    Getsinger, W.J.: Dispersion of parallel-coupled microstrip. IEEE Trans., Microw. Theory Tech. 21, 144–145 (1973)CrossRefGoogle Scholar
  53. 53.
    Wen, C.P.: Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Trans., Microw. Theory Tech. 17, 1087–1090 (1969)CrossRefGoogle Scholar
  54. 54.
    Ghione, G., Naldi, C.U.: Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite extent ground planes, and line-to-line coupling. IEEE Trans., Microw. Theory Tech. 35, 260–267 (1987)CrossRefGoogle Scholar
  55. 55.
    Riazat, M., Majidi-Ahy, R., Feng, I.-J.: Propagation modes and dispersion characteristics of coplanar waveguides. IEEE Trans., Microw. Theory Tech. 38, 245–251 (1990)CrossRefGoogle Scholar
  56. 56.
    Ghione, G., Goano, M.: A closed-form CAD-oriented model for the high-frequency conductor attenuation of symmetrical coupled coplanar waveguides. IEEE Trans., Microw. Theory Tech. 45, 1065–1070 (1997)CrossRefGoogle Scholar
  57. 57.
    Ghione, G., Goano, M.: The influence of ground plane width on the ohmic losses of coplanar waveguides with finite lateral ground planes. IEEE Trans., Microw. Theory Tech. 45, 1640–1642 (1997)CrossRefGoogle Scholar
  58. 58.
    Gorur, A., Karpuz, C.: Analytical formulas for conductor-backed asymmetric CPW with one lateral ground plane. Microw. Opt. Lett. 22, 123–126 (1999)CrossRefGoogle Scholar
  59. 59.
    Edwards, T.C., Steer, M.B.: Foundation of Interconnect and Microstrip Design. J. Wiley & Sons, Ltd. (2000)Google Scholar
  60. 60.
    Jackson, R.W.: Coplanar waveguide vs. microstrip for millimeter wave integrated circuits. In: 1986 MTT-S Dig., pp. 699–702 (1986)Google Scholar
  61. 61.
    Chang, C.-N., Wong, Y.-C., Chen, C.H.: Full-wave analysis of coplanar waveguides by variational conformal mapping technique. IEEE Trans., Microw. Theory Tech. 38, 1339–1344 (1990)CrossRefGoogle Scholar
  62. 62.
    Ke, J.-Y., Chen, C.H.: Dispersion and attenuation characteristics of coplanar waveguides with finite metallization thickness and conductivity. IEEE Trans., Microw. Theory Tech. 43, 1128–1135 (1995)CrossRefGoogle Scholar
  63. 63.
    Simons, R.N.: Coplanar Waveguide Circuits, Components & Systems. J. Wiley & Sons (2001)Google Scholar
  64. 64.
    Wolff, I.: Coplanar Microwave Integrated Circuits. Wiley Interscience (2006)Google Scholar
  65. 65.
    Uzunoglu, N.K., Nikita, K.S., Kaklamani, D.I. (eds.): Applied Computational Electromagnetics. Springer (1999)Google Scholar
  66. 66.
    Taflove, A.T., Hagness, S.C.: Computational Electrodynamics. Artech House (2005)Google Scholar
  67. 67.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium. IEEE Trans., Antennas Propag. 14, 302–307 (1966)zbMATHGoogle Scholar
  68. 68.
    Kron, G.: Equivalent circuit of the field equations of Maxwell. In: Proc. IRE, vol. 32, pp. 289–299 (May 1944)Google Scholar
  69. 69.
    Johns, P., Beurle, R.: Numerical solution of 2-dimensional scattering problems using a transmission-line matrix. Proc. IEEE 118, 1203–1208 (1971)CrossRefGoogle Scholar
  70. 70.
    Johns, P.B.: On the relationships between TLM and finite-difference methods for Maxwell equations. IEEE Trans., Microw. Theory Tech. 35, 60–61 (1987)CrossRefGoogle Scholar
  71. 71.
    Harrington, R.F.: Field Computation by Moment Methods. IEEE Press (1993)Google Scholar
  72. 72.
    Muskhelishvili, N.I.: Singular Integral Equations. Wolters-Noordhoff (1972)Google Scholar
  73. 73.
    Gakhov, F.D.: Boundary Value Problems. Pergamon Press (1966)Google Scholar
  74. 74.
    Lavrentiev, M.M.: Ill-posed Problems of Mathematical Physics and Analysis. Am. Math. Soc. (1986)Google Scholar
  75. 75.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill Posed Problems. V.H. Winston and Sons (1977)Google Scholar
  76. 76.
    Leonov, A.S.: On quasi-optimal choice of the regularization parameter in the Lavrentiev’s method. Siberian Math. J. 34(4), 117–126 (1993) (in Russian) MathSciNetCrossRefGoogle Scholar
  77. 77.
    Vaganov, R.B., Katsenelenbaum, B.Z.: Foundation of the Diffraction Theory. Nauka, Moscow (1982) (in Russian)Google Scholar
  78. 78.
    Nikolskyi, V.V., Nikolskaya, T.I.: Electrodynamics and Wave Propagation. Nauka, Moscow (1987) (in Russian)Google Scholar
  79. 79.
    Tai, C.T.: Dyadic Green’s Functions in Electromagnetic Theory. Intex Educational Publ., Scranton (1971)Google Scholar
  80. 80.
    Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. John Wiley (1964) (Translated from Russian)Google Scholar
  81. 81.
    Krylov, A.N., et al.: Academician B. G. Galerkin. On the seventieth Anniversary of his birth. Vestnik Akademii Nauk SSSR 4, 91–94 (1941)Google Scholar
  82. 82.
    Zhang, W.-X.: Engineering Electromagnetism: Functional Method. Ellis Horwood (1991)Google Scholar
  83. 83.
    Marcuvitz, N.: Waveguide Handbook. Inst. of Eng. and Techn. Publ. (1986)Google Scholar
  84. 84.
    Mashkovzev, B.M., Zibisov, K.N., Emelin, B.F.: Theory of Waveguides. Nauka, Moscow (1966) (in Russian)Google Scholar
  85. 85.
    Lewin, L.: Theory of Waveguides. Newnes-Buttertworths, London (1975)Google Scholar
  86. 86.
    Mittra, R. (ed.): Computer Techniques for Electromagnetics. Pergamon Press (1973)Google Scholar
  87. 87.
    Nikolskii, V.V.: Variational Methods for Inner Boundary Value Problems of Electrodynamics. Nauka Publ., Moscow (1967) (in Russian)Google Scholar
  88. 88.
    Silvester, P.P., Ferrari, R.L.: Finite Elements for Electrical Engineers. Cambridge University Press, Cambridge (1983)zbMATHGoogle Scholar
  89. 89.
    Kouzaev, G.A., Kurushin, E.P., Neganov, V.A.: Numerical computations of a slot-transmission line. Izv. Vysshikh Utchebnykh Zavedeniy Radiofizika (Radiophysics) 23, 1041–1042 (1981) (in Russian)Google Scholar
  90. 90.
    Hofmann, H., Meinel, H., Adelseck, B.: New integrated components mm-wave components using finlines. In: 1978 IEEE MTT-S Microw. Symp. Dig., pp. 21–23 (1978)Google Scholar
  91. 91.
    Kouzaev, G.A.: Balanced slotted line. In: Gvozdev, V.I., Nefedov, E.I. (eds.) Microwave Three-Dimensional Integrated Circuits, pp. 45–50. Nauka Publ, Moscow (1985) (Invited Chapter,in Russian)Google Scholar
  92. 92.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I.: Balanced slotted line. Theory and experiment. Radio Eng. Electron. Physics (Radiotekhnika i Elektronika) 30, 1050–1057 (1985)Google Scholar
  93. 93.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., Utkin, M.I.: Electrodynamical calculation of microwave volume integrated circuit components based on a balanced slotted line. J. Commun. Techn. Electronics (Radiotekhnika i Electronika) 33, 39–43 (1989)Google Scholar
  94. 94.
    Lerer, A.M., Mikhalevskyi, V.S., Zvetkovskaya, S.M.: Ribbed transmission line. Izv. Vuzov, Radioeklektronika 10(10), 46–50 (1981)Google Scholar
  95. 95.
    Kurushin, E.P., Kouzaev, G.A., Neganov, V.A., et al.: Microwave circulator. USSR Invention Certificate No 1080689 dated on, June 14 (1982)Google Scholar
  96. 96.
    Gvozdev, V.I., Golovinskaja, S.Y., Kouzaev, G.A., et al.: “Circulator,” USSR Invention Certificate, No 1712989 dated on, May 31 (1990)Google Scholar
  97. 97.
    Gazarov, V.M., Gvozdev, V.I., Kouzaev, G.A., et al.: Oscillator for microwave 3D-ICs. USSR Invention Certificate No 1830555 dated on, June 12 (1990)Google Scholar
  98. 98.
    Gvozdev, V.I., Gluschenko, A.G., Kouzaev, G.A., et al.: Amplifier. USSR Invention Certificate No 1775845 dated on, June 21 (1991)Google Scholar
  99. 99.
    Schwinger, J., Saxon, D.S.: Discontinuities in Waveguides. Gordon and Breach Sci. Publ. (1968)Google Scholar
  100. 100.
    Monteath, G.D.: Applications of the Electromagnetic Reciprocity Principle. Pergamon Press (1973)Google Scholar
  101. 101.
    Richmond, J.H.: On the variational aspects of the moment method. IEEE Trans., Antennas Propag. 39, 473–479 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunications Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations