Advertisement

EM Radiometry and Imaging

  • Guennadi A. Kouzaev
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 169)

Abstract

This Chapter is on the basics of microwave radiometry used for registration of weak thermal signals. Additionally to the principles of radiometry, some original results are considered. Among them is the application of the methods of stochastic dynamics to the analysis of radiation and a technique developed to separate the parasitic deterministic and human-body thermal signals. A millimeter wave imager of a novel design is described allowing working in the radiometric, in scattering, and in holographic regimes. References -74. Figures -18. Pages -39.

Keywords

Fractal Dimension Brightness Temperature Correlation Dimension Hausdorff Dimension Microwave Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave Remote Sensing. Active and Passive, pp. 1–3. Addison-Wesley Publishing Comp., Reading (1981)Google Scholar
  2. 2.
    Sharkov, E.A.: Passive Microwave Remote Sensing of the Earth. Physical Foundations. Physical Foundations. Springer, Berlin (2003)Google Scholar
  3. 3.
    Armand, N.A., Polyakov, V.M.: Radiowave Propagation and Remote Sensing of the Environment. CRC, Boca Raton (2004)CrossRefGoogle Scholar
  4. 4.
    Skou, N., Le Vine, D.: Microwave Radiometer Systems: Design and Analysis. Artech House, Norwood (2006)Google Scholar
  5. 5.
    Godik, E.E., Gulyaev, Y.V.: Functional imaging of the human body. IEEE Eng. Medicine and Biology 10(4), 21–29 (1991)CrossRefGoogle Scholar
  6. 6.
    Foster, K.R., Cheever, E.A.: Microwave radiometry in biomedicine. A reappraisal. Bioelectromagnetics 13(6), 567–579 (1992)CrossRefGoogle Scholar
  7. 7.
    Klementsen, Ø., Birkelund, Y., Jacobsen, S.K., et al.: Design of medical radiometer front-end for improved performance. Progress in Electromagnetics Research B 27, 289–306 (2011)Google Scholar
  8. 8.
    Heinz, E., May, T., Zieger, G., et al.: Passive submillimeter-wave stand-off video camera for security applications. J. Infrared Milli. Teraherz Waves 31, 1355–1369 (2010)CrossRefGoogle Scholar
  9. 9.
    Fedoseev, L.I., Bystrov, R.P., Krasnaynsky, A.F., et al.: Experimental study of radiothermal selectivity in millimeter-waves. Zhurnal Radioelektroniki (J. Radio Electronics) (12), 1–17 (2010) (in Russian)Google Scholar
  10. 10.
    Chen, K., Zhu, Y., Guo, X., et al.: Design of 8-mm-band aperture synthetic radiometer and imaging experiment. J. Infrared Milli. Terahertz Waves 31, 724–734Google Scholar
  11. 11.
    Peichl, M., Dill, S., Jirousek, M., Süß, H.: Microwave radiometry – imaging technologies and applications. In: Proc. WFMN 2007, pp. 75–83 (2007)Google Scholar
  12. 12.
    Gvozdev, V.I., Kouzaev, G.A., Krivoruchko, V.I., Turygin, S.Y.: Multifunctional radio vision system (Imager). Russian Federation Patent, No. 2139522 dated, July 30 (1998)Google Scholar
  13. 13.
    Gvozdev, V.I., Krivoruchko, V.I., Kouzaev, G.A., Turygin, S.Y.: A microwave imager. Measurement Techniques 43, 270–275 (2000)CrossRefGoogle Scholar
  14. 14.
    Kouzaev, G.A., Turygin, S.Y., Tchernyi, V.V., et al.: Millimeter-wave high-sensitive radiovision system for study of the human-body radiation. In: Proc. Int. SPIE Conf. EBIOS 2000, Amsterdam, Netherlands, Paper No 4158-50 (July 2000)Google Scholar
  15. 15.
    Kouzaev, G.A., Kulevatov, M.A., Turygin, S.Y., et al.: A millimeter-wave high-sensitivity radio-vision system and a study of bio-objects’ electromagnetic fields. Medical Physics (5), 70–71, in Russian (1998)Google Scholar
  16. 16.
    Stephan, K.D.: Radiometry before World War II: Measuring infrared and millimeter-wave radiation 1800-1925. IEEE Antennas and Propag. 47(6), 28–37 (2005)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.-F., Hover, D., Sendelbach, S., et al.: Microwave photon counter based on Josephson junction. Phys. Rev. Lett. 107(21), 217401 (2011)CrossRefGoogle Scholar
  18. 18.
    Dicke, R.H.: The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instr. 3, 268–279 (1946)CrossRefGoogle Scholar
  19. 19.
    Jie, L., Zhesi, W., Yunnei, C., et al.: Research on the microwave radiometer signal waveform simulation. In: Proc. of 2011 4th Int. Conf. Intelligent Comput. Techn. Automation, pp. 679–682 (2011)Google Scholar
  20. 20.
    Randa, J., Lahtinen, J., Camps, A., et al.: Recommended terminology for microwave radiometry. NIST Technical Note 1551 (2008)Google Scholar
  21. 21.
    Hand, J.W., Van Leewen, G.M.J., Mizushina, S., et al.: Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling. Phys. Med. Biol. 46, 1885–1903 (2001)CrossRefGoogle Scholar
  22. 22.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9(1-2), 189–208 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kouzaev, G.A.: The use of a data reconstruction algorithm to electromagnetic bio-signals. In: Proc. Int. SPIE Conf. EBIOS 2000, pp. 4158–4149, Paper No 4158-49 (July 2000)Google Scholar
  24. 24.
    Kouzaev, G.A., Bedenko, E.A.: Study of radiometric signals with chaotic dynamics methods. Medical Physics (5), 72–75 (1998) (in Russian)Google Scholar
  25. 25.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Prentice-Hall, Upper Saddle River (1994)zbMATHGoogle Scholar
  26. 26.
    Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Potapov, A.: Fractals, scaling and fractional operators in radio techniques and electronics: contemporary state and developments. J. Radio Electronics (1), 1–99 (2010) (in Russian)Google Scholar
  28. 28.
    Maasch, K.A.: Calculating climate attractor dimension from δ 18O records by the Grassberger-Procaccia algorithm. Climate Dynamics 4(1), 45–55 (1989)CrossRefGoogle Scholar
  29. 29.
    Fraedrich, K.: Estimating the dimensions of weather and climate attractors. J. Atmospher. Sci. 43(5), 419–432 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Leok, M.,, B.T.: Estimating the attractor dimension of the equatorial weather system. Acta Phys. Polonica A 85(suppl. S-27) (1994)Google Scholar
  31. 31.
    Tsonis, A., Elsner, J.B., Georgakakos, K.P.: Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation. J. Atmospher. Sci. 50(15), 2549–2555 (1993)CrossRefGoogle Scholar
  32. 32.
    Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20(3), 167–192 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Malraison, B., Atten, P., Berge, P., Dubois, M.: Dimension of strange attractors: an experimental determination for the chaotic regime of two convective systems. J. Physique – Lett. 44(22), L-897–L-902 (1983)CrossRefGoogle Scholar
  34. 34.
    Torkamani, M.A., Asgari, J., Lucas, C.: Estimating strange attractor’s dimension in very noisy data. In: 2nd Int. Conf. Information and Communication Technologies, ICTTA 2006, Damascus, Syria, pp. 1944–1947 (2006)Google Scholar
  35. 35.
    Weber, R.O., Talkner, P., Stefanicki, G., Arvisais, L.: Search for finite dimensional attractors in atmospheric turbulence. Boundary-Layer Meteorology 73(1-2), 1–14 (1995)CrossRefGoogle Scholar
  36. 36.
    Lehnertz, K., Elger, C.: Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett. 80(22), 5019–5022 (1998)CrossRefGoogle Scholar
  37. 37.
    Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Prog. Biomed. 80(3), 187–194 (2005)CrossRefGoogle Scholar
  38. 38.
    Franca, L.F.P., Savi, M.A.: Estimating attractor dimension on the nonlinear pendulum time series. J. Braz. Soc. Mech. Sci. 23(4), 427–439 (2001)CrossRefGoogle Scholar
  39. 39.
    Baker, G.L., Gollub, J.P.: Chaotic Dynamics: an Introduction. Cambridge University Press, New York (1996)zbMATHCrossRefGoogle Scholar
  40. 40.
    Mudelsee, M., Stattegger, K.: Plio-/Pleistocene climate modeling based on oxygen isotope time series from deep-sea sediment cores: The Grassberger-Procaccia algorithm and chaotic climate systems. Math. Geol. 26(7), 799–815 (1994)CrossRefGoogle Scholar
  41. 41.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, B.S. (eds.). Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)Google Scholar
  42. 42.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    McGuinness, M.J.: A computation of the limit capacity of the Lorenz attractor. Physica D 16(2), 265–275 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Smith, L.A.: Intrinsic limits on dimension calculations. Phys. Lett. A 133(6), 283–288 (1988)CrossRefGoogle Scholar
  45. 45.
    Havstad, J.W., Ehlers, C.L.: Attractor dimension of nonstationary dynamical systems from small data sets. Phys. Rev. A 39(2), 845–853 (1989)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmospher. Sci. 20(2), 130–141 (1963)MathSciNetCrossRefGoogle Scholar
  47. 47.
  48. 48.
    Glazier, J.A., Libchaber, A.: Quasi-periodicity and dynamical systems: An experimentalist’s view. IEEE Trans. Circuits Syst. 35(7), 790–809 (1988)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Halsey, T.C., Jensen, M.H., Kadanoff, L.P., et al.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33(2), 1141–1151 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Richter, H.: On a family of maps with multiple chaotic attractors. Chaos, Solitons Fractals 36(3), 559–571 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Jensen, M.H., Kadanoff, L.P., Libchaber, A., et al.: Global universality at the onset of chaos: Results of a forced Rayleigh-Bénard experiment. Phys. Rev. Lett. 55(25), 2798–2801 (1985)CrossRefGoogle Scholar
  52. 52.
    Consolini, G., Marcucci, M.F., Candidi, M.: Multifractal structure of auroral electrojet index data. Phys. Rev. Lett. 76(21), 4082–4085 (1996)CrossRefGoogle Scholar
  53. 53.
    Luo, X., Small, M., Danca, M.-F., Chen, G.: On a dynamical system with multiple chaotic attractors. Int. J. Bifurcation Chaos 17(9), 3235–3251 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Dong, L., Zhi-Gang, Z.: Multiple attractors and generalized synchronization in delayed Mackey-Glass systems. Chinese Phys. B 17(11), 4009–4013 (2008)CrossRefGoogle Scholar
  55. 55.
    Thode, H.C.: Testing for Normality. Marcel Dekker, New York (2002)zbMATHCrossRefGoogle Scholar
  56. 56.
    Royston, J.P.: Approximating the Shapiro-Wilk W-test for non-normality. Statist. Comput. 2(3), 117–119 (1992)CrossRefGoogle Scholar
  57. 57.
    Royston, J.P.: Remark AS R94: A remark on algorithm AS 181: The W-test for normality. J. Royal Statist. Soc. C 44(4), 547–551 (1995)Google Scholar
  58. 58.
    D’Agostino, R.B., Belanger, A., D’Agostino, R.B.: A suggestion for using powerful and informative tests of normality. Amer. Statist. 44(4), 316–320 (1990)Google Scholar
  59. 59.
  60. 60.
  61. 61.
    Kapranov, S.V., Kouzaev, G.A.: Characterization of microwave radiometers and study of human body radiation by the means of the state space reconstruction algorithms. (Unfinished paper, 2012)Google Scholar
  62. 62.
    Kouzaev, G.A.: A projective approach to the problems of processing of complex signals. Radioelektronika (Radioelectroniks). Izvestia Vysshikh Uchebnykh Zavedenyi (1), 53–57 (2004)Google Scholar
  63. 63.
    Peichl, M., Dill, S., Jirouseck, M., et al.: Microwave radiometry - imaging technologies and applications. In: Proc. of WFMN 2007, Chemnitz, Germany, pp. 75–83 (2007)Google Scholar
  64. 64.
    Watabe, K., Shimizu, K., Yoneyama, M., et al.: Millimeter-wave active imaging using neural networks for signal processing. IEEE Trans., Microw. Theory Techn. 51, 1512–1516 (2003)CrossRefGoogle Scholar
  65. 65.
    Nanzer, J.A., Rogers, R.L.: Analysis of the signal response of a scanning-beam millimeter-wave correlation radiometer. IEEE Trans., Microw. Theory Techn. 59, 2357–2368 (2011)CrossRefGoogle Scholar
  66. 66.
    Weinreb, S.: Monolithic integrated circuit imaging radiometers. In: 1991 IEEE MTT-S Dig., vol. L-8, pp. 405–408 (1991)Google Scholar
  67. 67.
    Corbella, I., Tores, F., Camps, A., et al.: L-band aperture synthesis radiometry: hardware requirements and system performance. In: Proc. IGARSS 2000 Symp., vol. 7, pp. 2975–2977 (2000)Google Scholar
  68. 68.
    Kim, W.-G., Moon, N.-W., Chang, Y.-S., et al.: System design of focal plane array based millimeter-wave imaging radiometer for concealed weapon detection. In: Proc. IGARSS 2011 Symp., pp. 2258–2261 (2011)Google Scholar
  69. 69.
    Liao, S., Gopalsami, N., Elmer, T.W., et al.: Passive millimeter-wave dual-polarization imagers. IEEE Trans., Instr. Measur., 1–9 (2012)Google Scholar
  70. 70.
    Lutchi, T., Matzler, C.: Stereoscopic passive millimeter-wave imaging and ranging. IEEE Trans., Microw. Theory Techn. 53, 2594–2599 (2005)CrossRefGoogle Scholar
  71. 71.
    Moon, N.-W., Singh, M.K., Kim, Y.-H.: Passive range measurement and discrepancy effects of distance for stereo scanning W-band radiometer. In: Proc. 11th Specialist Meeting Microwave Radiometry and Remote Sensing of the Environment, MicroRad 2010, pp. 217–220 (2010)Google Scholar
  72. 72.
    Wang, B., Li, X., Qian, S.: Near range MNV synthetic aperture radiometer 3D passive imaging. In: Proc. 8th Int. Symp. Antennas, Propagation and EM Theory, pp. 233–236 (2008)Google Scholar
  73. 73.
    Arakelyan, A., Grigorian, M., Hambaryan, A., et al.: Combined active and passive measurements of snow, bare and vegetated soils microwave reflective and emissive characteristics by Ka-band, combined scatterometer-radiometer system. In: Proc. IEEE Int. Symp. IGARSS 2010, pp. 4462–4465 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunications Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations