EM Topological Signaling and Computing

  • Guennadi A. Kouzaev
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 169)


In the Chapter 4, a topological approach to the theory of EM boundary value problems has been already considered. Additionally to the computational aspects, the ideas of topology are applicable to the noise-tolerant signaling, computing, microwave imaging, and this application area and some related results are studied below. References -191. Figures -49. Pages -82.


Transmission Line Predicate Logic Rectangular Waveguide Modal Filter Mode Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conrad, M., Zauner, K.-P.: Molecular Computing: From Conformational Pattern Recognition to Complex Processing Networks. In: Hofestädt, R., Löffler, M., Schomburg, D., Lengauer, T. (eds.) GCB 1996. LNCS, vol. 1278, pp. 1–10. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): WMC 2002. LNCS, vol. 2597. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  3. 3.
    Freeman, W.J.: The neurobiological infrastructure of natural computing: intentionality. New Mathematics and Natural Computing (NMNC) 1(1), 19–29 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Osterberg, B.: The Information Processing Mechanism of the Brain, E-Book, Scholar
  5. 5.
    de Pavia, G.: Pattern recognition principle for a theory of mind,
  6. 6.
    Liu, Z., Stasko, J.T.: Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE Trans. Visualization Comp. Graphics 16, 999–1008 (2010)CrossRefGoogle Scholar
  7. 7.
    Fernando, C., Karishma, K.K., Szathmary, E.: Copying and evolution of neuronal topology. PLoS One 3(11), e3775, 1–17 (2008)CrossRefGoogle Scholar
  8. 8.
    McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45(1), 141–191 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. El. Archive (2002),
  10. 10.
    Perelman, G.: Ricci flow with surgery on three-manifolds. El. Archive (2003),
  11. 11.
    Thomson, A.: Thin position and the recognition problem for S3. Math. Res. Lett. 1, 613–630 (1994)MathSciNetGoogle Scholar
  12. 12.
    Gvozdev, V.I., Kouzaev, G.A.: Field approach for CAD of microwave 3-D ICs. In: Proc. Conf. Microwave Three-Dimensional Integrated Circuits, Tbilisy, USSR, pp. 67–73 (1988) (in Russian)Google Scholar
  13. 13.
    Kouzaev, G.A.: Mathematical fundamentals of topological electrodynamics and the three-dimensional microwave integrated circuits’ simulation. In: Electrodynamics and Techniques of Microwaves and EHF, MIEM, pp. 37–44 (1991) (in Russian)Google Scholar
  14. 14.
    Gvozdev, V.I., Kouzaev, G.A.: Microwave flip-flop. Russian Federation Patent, No 2054794 (February 26, 1992)Google Scholar
  15. 15.
    Gvozdev, V.I., Kouzaev, G.A.: Topological computer. Computers and People (1), 2–5 (1992) (in Russian)Google Scholar
  16. 16.
    Gvozdev, V.I., Kouzaev, G.A., Chernaykov, G.M., et al.: Topological demodulator. Telecommun. and Radio-Engineering 48, 26–28 (1993)Google Scholar
  17. 17.
    Kouzaev, G.A., Nazarov, I.V.: Topological impulse modulation of the fields and the hybrid logic devices. In: Proc. Conf. and Exhibition on Microw. Techn. Satellite Commun., Sevastopol, Ukraine, vol. 4, pp. 443–446 (1993) (in Russian)Google Scholar
  18. 18.
    Bykov, D.V., Gvozdev, V.I., Kouzaev, G.A.: Contribution to the theory of topological modulation of electromagnetic field. Russian Physics Doklady 38, 512–514 (1993)Google Scholar
  19. 19.
    Gvozdev, V.I., Kouzaev, G.A.: A new technology of signal processing for super high-speed microwave circuits. Russian Microelectronics 22, 37–50 (1993)Google Scholar
  20. 20.
    Kouzaev, G.A., Nazarov, I.V.: Quasineural effects for topologically modulated microwave field signals. Electrodynamics and Technique of Microwave and EHF 3, 17–18 (1993) (in Russian)Google Scholar
  21. 21.
    Kouzaev, G.A., Nazarov, I.V.: On the theory of hybrid-logic devices. J. Commun. Technology and Electronics (Radiotekhnika i Elektronika) 39, 130–136 (1994)Google Scholar
  22. 22.
    Kouzaev, G.A.: On the optimal design of super high-speed ICs for topologically modulated signals. Electrodynamics and Technique of Microwave and EHF 1, 70–73 (1994) (in Russian)Google Scholar
  23. 23.
    Kouzaev, G.A., Kalita, A.V.: 4-valued gate for topologically modulated signals. Electrodynamics and Techniques of Microwave and EHF 3, 5 (1995) (in Russian)Google Scholar
  24. 24.
    Kouzaev, G.A.: Information processing of field signals. Electrodynamics and Techniques of Microwave and EHF 4, 46–49 (1995) (in Russian)Google Scholar
  25. 25.
    Kouzaev, G.A.: Topological pulse modulation of the electromagnetic field and super high-speed logical circuits of microwave range. In: Proc. Int. URSI Symp. Electromagnetic Theory, St.-Petersburg, Russia, May 23-26, pp. 584–586 (1995)Google Scholar
  26. 26.
    Kouzaev, G.A.: Information properties of electromagnetic field superposition. J. Commun. Technology and Electronics (Radiotekhnika i Elektronika) 40, 39–47 (1995)Google Scholar
  27. 27.
    Kouzaev, G.A.: Super high-speed switching of signals with discrete modulation of electromagnetic field structures. J. Techn. Physics 65, 205–207 (1995)Google Scholar
  28. 28.
    Gvozdev, V.I., Kouzaev, G.A., Nazarov, I.V.: Topological switches for picosecond digital signal processing. Russian Microelectronics 24, 16–24 (1995) (in Russian)Google Scholar
  29. 29.
    Kouzaev, G.A., Gvozdev, V.I.: Topological pulse modulation of the field and new microwave circuits designs for super-speed operating computers. In: Proc. Symp. Signals, Systems and Electronics, San Francisco, USA, October 25-27, pp. 383–384 (1995)Google Scholar
  30. 30.
    Gvozdev, V.I., Kouzaev, G.A., Nazarov, I.V.: Topological pulse modulation of fields and new microwave circuits design for super-speed operating devices. In: Proc. Trans. Black Sea Region Symposium Applied Electromagnetism, Metsovo, Epirus-Hellas. Athens, Greece, April 17-19, pp. 174–175 (1996)Google Scholar
  31. 31.
    Kouzaev, G.A., Nazarov, I.V.: Logical circuits for super high-speed processing of field impulses with topologically modulated structures. In: Proc. Int. Conf. Intelligent Technologies in Human-Related Sciences, incl. The 1996 System and Signals Symp., Leon, Spain, July 5-7 (1996)Google Scholar
  32. 32.
    Kouzaev, G.A., Nazarov, I.V.: Theoretical and experimental estimations of the time delay of switches for topologically modulated electromagnetic field signals. In: Proc. AMSE Sci. Int. Conf. Commun., Signals and Systems, Brno, Czech Republic, September 10-12, pp. 181–183 (1996)Google Scholar
  33. 33.
    Kuzaev, G.A.: Theoretical aspects of measurements of the topology of the electromagnetic field. Measurement Techniques 39, 186–191 (1996)CrossRefGoogle Scholar
  34. 34.
    Gvozdev, V.I., Kouzaev, G.A., Nazarov, I.V.: Problems of speed-increasing of the digital information processing. Zarubezhnaya Radioelektronika (Foreign Radio Electronics) (2), 19–30 (1996) (in Russian)Google Scholar
  35. 35.
    Gvozdev, V.I., Kouzaev, G.A., Linev, A.A., et al.: Sensor for measurements of the permittivity of a medium in closed systems. Measurement Techniques 39, 81–83 (1996)CrossRefGoogle Scholar
  36. 36.
    Kouzaev, G.A., Nazarov, I.V., Tchernyi, V.V.: Circuits for ultra high-speed processing spatially modulated electromagnetic field signals. Int. J. Microcircuits and Electron. Packaging 20, 501–515 (1997)Google Scholar
  37. 37.
    Kouzaev, G.A., Nazarov, I.V., Tcherkasov, A.S.: A physical view on broadband passive components for signal processing. In: Proc. 2nd Int. Sci. Conf. ELEKTRO 1997, Zilina, Slovak Republic, June 23-24, pp. 208–213 (1997)Google Scholar
  38. 38.
    Kouzaev, G.A.: An active VLSI hologram for super high-speed processing of electromagnetic field signals. In: Proc. 3rd Int. Conf. Theory and Technique for Transmission, Reception, and Processing Digital Information, Kharkov, Ukraine, September 16-18, pp. 135–136 (1997) (in Russian)Google Scholar
  39. 39.
    Kouzaev, G.A.: High-speed Signal Processing Circuits on the Principles of the Topological Modulation of the Electromagnetic Field. Doctoral Thesis, Moscow, MSIEM (1997) (in Russian)Google Scholar
  40. 40.
    Kuzaev, G.A.: Experimental study of the transient characteristics of a switch for topologically modulated signals. J. Techn. Physics 40, 573–575 (1998)CrossRefGoogle Scholar
  41. 41.
    Kouzaev, G.A., Nazarov, I.V., Cherny, V.V.: Super broadband passive components for integrated circuits signal processing. In: Proc. SPIE, vol. 3465, pp. 483–490 (1998)Google Scholar
  42. 42.
    Kouzaev, G.A., Nazarov, I.V., Tcherkasov, A.S.: Physical fundamentals for super-high speed processing spatially-modulated field signals. In: Proc. 28th Eur. Microw. Conf., Amsterdam, October 5-8, vol. 2, pp. 152–156 (1998)Google Scholar
  43. 43.
    Kouzaev, G.A., Nazarov, I.V., Tchernyi, V.V.: The super broadband passive components for integrated circuits signal processing. In: Proc. 4th Conf. Millimeter and Submillimeter Waves and Applications, Digest, San Diego, July 20-24, pp. 161–163 (1998)Google Scholar
  44. 44.
    Kouzaev, G.A., Nazarov, I.V., Tcherkasov, A.S.: Principles of processing of spatially modulated field signals. In: Proc. Int. AMSE Conf. Contribution of Cognition to Modelling, Lyon, France, July 6-8, Paper No 10.1 (1998)Google Scholar
  45. 45.
    Kouzaev, G.A., Romanenkov, A.V., Smirnov, P.S.: Study of picosecond transients of microstrip components. Physics of Wave Process and Radiotechnical Systems (1) (1998) (in Russian)Google Scholar
  46. 46.
    Kouzaev, G.A., Tcherkasov, A.S.: Circuit modeling for super high-speed processing spatially modulated field signals. In: Proc. 1998 Int. Conf. Math. Methods in Electromag. Theory, Kharkov, Ukraine, June 2-5, pp. 421–423 (1998)Google Scholar
  47. 47.
    Kouzaev, G.A., Al-Shedifat, F., Smirnov, P.S.: Physical limitations of passive component speed-action. In: Proc. Int. Conf. Problems of Electronic Instrument Making, Saratov, Russia, September 7-9, vol. 2, pp. 117–121 (1998) (in Russian)Google Scholar
  48. 48.
    Kouzaev, G.A.: Theoretical and experimental estimations of switching delay for topologically modulated signals. J. Commun. Technology and Electronics (Radiotekhnika i Elektronika) 43(1), 76–82 (1999)Google Scholar
  49. 49.
    Kouzaev, G.A., Tchernyi, V.V., Al-Shedifat, F.: Subpicosecond components for quasioptical spatial electromagnetic signal processing. In: Proc. SPIE, vol. 3795, pp. 40–49 (1999)Google Scholar
  50. 50.
    Kouzaev, G.A., Al-Shedifat, F., Kalita, A.V.: Currents and the frequency performance of modal filters on coupled microstrip transmission lines for microwave signals. Physics of Wave Process and Radiotechn. Systems 2, 42–43 (1999) (in Russian)Google Scholar
  51. 51.
    Kouzaev, G.A., Nazarov, I.V., Kalita, A.V.: Unconventional logic elements on the base of topologically modulated signals. El. Archive,
  52. 52.
    Kouzaev, G.A., Cherny, V.V., Lebedeva, T.A.: Multivalued processing spatially modulated discrete electromagnetic signals. In: Proc. 30th Eur. Microw. Conf., Paris, pp. 209–213 (October 2000)Google Scholar
  53. 53.
    Kouzaev, G.A., Lebedeva, T.A.: New logic components for processing complex measurement data. Measurement Techniques 43, 1070–1073 (2000)CrossRefGoogle Scholar
  54. 54.
    Kouzaev, G.A., Lebedeva, T.A.: Multivalued and quantum logic modeling by mode physics and topologically modulated signals. In: Proc. Int. Conf. Modelling and Simulation, Las Palmas de Grand Canaria, Spain, September 25-27 (2000),
  55. 55.
    Kouzaev, G.A., Cherny, V.V., Lebedeva, T.A.: Multi-valued processing spatially modulated discrete electromagnetic signals (Invited paper). In: Proc. Int. Conf. Systems, Cybernetics, Informatics, Orlando, USA, vol. VI (July 2000)Google Scholar
  56. 56.
    Kouzaev, G.A., Ermakov, A.: Multivalued electronic components for digital processing of discrete spatially-modulated field signals. In: Proc. Int. Conf. Systems, Analysis and Synthesis SCI200/ISAS 2000, vol. XI (2000)Google Scholar
  57. 57.
    Kouzaev, G.A., Domashenko, G.D., Al-Shedifat, F., Potapova, T.A.: Picosecond generator for experimental studies of circuits for spatial processing of electromagnetic signals. Wave Processes and Radiotechn. Systems 3(1), 49–53 (2000) (in Russian)Google Scholar
  58. 58.
    Kouzaev, G.A.: Predicate and pseudoquantum gates for amplitude-spatially modulated electromagnetic signals. In: Proc. 2001 IEEE Int. Symp. Intelligent Signal Processing and Commun. Systems, Nashville, Tennessee, USA, November 20-23 (2001)Google Scholar
  59. 59.
    Kouzaev, G.A.: Qubit logic modeling by electronic gates and electromagnetic signals. El. Archive (2001),
  60. 60.
    Kouzaev, G.A.: Topologically modulated signals and predicate logic gates for their processing. El. Archive (2001),
  61. 61.
    Kouzaev, G.A., Nazarov, I.V.: Discrete space-time modulated electromagnetic signals. In: Proc. 4th Int. Conf. Physics Techn. Appl. Wave Processes, Nizhny Novgorod, Russia, pp. 74–75 (October 2005)Google Scholar
  62. 62.
    Kouzaev, G.A.: Space-time modulated signals. Noosphere (2005),
  63. 63.
    Kouzaev, G.A.: Topological computing (Invited paper). WSEAS Trans. Comp. 5, 1247–1250 (2006)Google Scholar
  64. 64.
    Kouzaev, G.A.: Spatio-temporal electromagnetic field shapes and their logical processing. El. Archive (2007),
  65. 65.
    Kouzaev, G.A., Kostadinov, A.N.: Predicate gates for spatial logic. In: Proc. 11th Int. Multiconference Computer Science and Techn., CSCC, Agious Nikolaos, Crete Island, Greece, July 23-28, vol. 4, pp. 151–156 (2007)Google Scholar
  66. 66.
    Kouzaev, G.A.: Spatial quasineural circuits for electromagnetic signals (Invited paper). In: Proc. 12th Int. Conf. Circuits, Heraklion, Greece, July 2-24, pp. 218–223 (2008),
  67. 67.
    Kouzaev, G.A., Kostadinov, A.N.: Predicate logic processor for space-time signals (invited paper). In: Proc. 7th Int. Conf. Physics and Techn. Wave Processes, Samara, Russia, September 15-21, Paper # 24 (2008)Google Scholar
  68. 68.
    Kouzaev, G.A., Kostadinov, A.N.: Predicate logic processor. In: Innovation Forum 2008, 2009, Toronto, Canada (2008, 2009); (Booklet; Electronic version: Internet J. Noosphere,
  69. 69.
    Kostadinov, A.N., Kouzaev, G.A.: Predicate logic processor of spatially patterned signals. In: Proc. Recent Advances in Systems Engineering and Applied Mathematics, pp. 94–96 (2008)Google Scholar
  70. 70.
    Kouzaev, G.A., Kostadinov, A.N.: Predicate and Boolean operations processor. In: Proc. 8th Int. Conf. Applications of Electrical Eng., Houston, USA, April 5-May 2, pp. 199–203 (2009)Google Scholar
  71. 71.
    Kouzaev, G.A.: Communications by vector manifolds (Invited paper). In: Mastorakis, M., Mladenov, V., Kontargry, V.T. (eds.) Proc. European Computing Conf. LNEE, vol. 1, 27, ch. 6, pp. 617–624. Springer (2009)Google Scholar
  72. 72.
    Kouzaev, G.A., Kostadinov, A.N.: Predicate gates, components and a processor for spatial logic. J. Circuits, System, Computers 19(7), 1517–1547 (2010)CrossRefGoogle Scholar
  73. 73.
    Stewart, J.V.: Intermediate Electromagnetic Theory. World Scientific (2001)Google Scholar
  74. 74.
    Andronov, A.A., Leontovich, E.A., Gordon, I.I., et al.: Qualitative Theory of Second Order Dynamical Systems. Halsted Press (1973)Google Scholar
  75. 75.
    Stolyar, A.A.: Introduction to Elementary Mathematical Logic. Dover Publishing (1983)Google Scholar
  76. 76.
    Klovskyi, D.D., Soifer, V.A.: Space-Time Signal Processing. Svyaz Publ., Moscow (1976) (in Russian)Google Scholar
  77. 77.
    Migliore, M.D.: On electromagnetics and information theory. IEEE Trans., Microw. Theory Tech. 56, 3188–3200 (2008)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Sapiro, G.: Geometric Partial Differential Equations and Image Processing. Cambridge University Press (2001)Google Scholar
  79. 79.
    Narahara, K., Otsuji, T.: Ultrafast gating circuit using coupled waveguides. IEICE Trans. Electron E83-C, 98–108 (2000)Google Scholar
  80. 80.
    Krishnamachari, B., Lok, S., Gracia, C., Abraham, S.: Ultra high speed digital processing for wireless systems using passive microwave logic. In: Proc. 1998 IEEE Int. Radio and Wireless Conf., RAWCON 1998, Colorado Springs, Colorado, pp. 43–46 (August 1998)Google Scholar
  81. 81.
    Caufield, H.J., Dolev, S.: Why future supercomputing requires optics. Nature Photonics 4, 261–263 (2010)CrossRefGoogle Scholar
  82. 82.
    Raleigh, G.G., Cioffi, J.M.: Spatio-temporal coding for wireless communication. IEEE Trans. Commun. 46, 357–366 (1998)CrossRefGoogle Scholar
  83. 83.
    Tamburini, E., Mari, E., Sponselli, A., et al.: Encoding many channels on the same frequency through radio vorcity, First experimental test. New Phys. J. 14, 1–17 (2012)Google Scholar
  84. 84.
    Eisenstad, W.R., Stengel, B., Thompson, B.M.: Microwave Differential Circuit Design Using Mixed-mode S-parameters. Artech House, Inc. (2006)Google Scholar
  85. 85.
    Centurelli, F., Luzi, R., Marietti, P., et al.: An active balun for high-CMRR IC design. In: Proc. 13th GAAS Symp., Paris, pp. 621–624 (2005)Google Scholar
  86. 86.
    Poulton, J.W., Tell, S., Palmer, R.: Multiwire differential signaling. White Paper on the US Pat. #6556628, April 29 (2003)Google Scholar
  87. 87.
    Goldie, J.: LVDS, CML, ECL-differential interfaces with odd voltages. Planet Analog (January 21, 2003)Google Scholar
  88. 88.
    Vega-Gonzales, V.H., Torres-Torres, R., Sanchez, A.S.: Analysis of the electrical performance of multi-coupled high-speed interconnects for SoP. In: Proc. 52nd MWSCAS 2009, pp. 1030–1033 (2009)Google Scholar
  89. 89.
    Gabara, T.: Phantom mode signaling in VLSI systems. In: Proc. 2001 Conf. Advanced Research in VLSI, pp. 88–100 (2001)Google Scholar
  90. 90.
    Ho, A., Stojanovic, V., Chen, F., et al.: Common-mode back-channel signaling system for differential high-speed links. VLSI Circuits. Dig. Tech. Papers, pp. 352–355 (2004)Google Scholar
  91. 91.
    Kimura, M., Ito, H., Sugita, H., et al.: Zero-crosstalk bus line structure for global interconnects in Si ultra large scale integration. Jpn. J. Appl. Phys. 45, 4977–4981 (2006)CrossRefGoogle Scholar
  92. 92.
    Alcatel-Lucent Bell Labs achieves industry first: 300 Megabits per second over just two traditional DSL lines,
  93. 93.
    Poulton, J.W., Palmer, R.: Multiwire differential signaling. White Paper on US Patent #6556628 (April 29, 2003)Google Scholar
  94. 94.
    Allstot, D.J., Chee, S.-H., Kiaei, S., et al.: Folded source-coupled logic vs. CMOS static logic for low-noise mixed-signal ICs. IEEE Trans., Circuits and Systems-1 40, 553–563 (1993)CrossRefGoogle Scholar
  95. 95.
    Ng, P., Balsara, P.T., Steisiss, D.: Performance of CMOS differential circuits. IEEE J. Solid-State Circ. 31, 841–846 (1996)CrossRefGoogle Scholar
  96. 96.
    Tsai, Y.-H., Yang, H.-L., Lin, W.-J., et al.: A new differential logic-compatible multiple-time programmable memory cell. Jpn. J. Appl. Phys. 49, 04DD13-1-4 (2010)Google Scholar
  97. 97.
    Hanyu, T., Mochizuki, A., Kameyama, M.: Design and evaluation of a multiple-valued arithmetic integrated circuit based on differential logic. In: IEE Proc. Circuits Devices Syst., vol. 143, pp. 331–336 (1996)Google Scholar
  98. 98.
    Mochizuki, Hanui, T.: Highly reliable multiple-valued circuit based on dual-rail differential logic. In: Proc. 36th Int. Symp. Multiple-valued Logic, ISMVL 2006 (2006)Google Scholar
  99. 99.
    Martin, A.J., Nystroem, M.: Asynchronous techniques for system-on-chip design. Proc. IEEE 94, 1089–1120 (2006)CrossRefGoogle Scholar
  100. 100.
    Azaga, M., Othman, M.: Source couple logic (SCL): Theory and physical design. Am. J. Eng. Appl. Sci. 1, 24–32 (2008)CrossRefGoogle Scholar
  101. 101.
    Zhang, L., Liu, J., Zhu, H., et al.: High performance current-mode differential logic. In: Proc. ASPDAC 2008, pp. 720–725 (2008)Google Scholar
  102. 102.
    Tiri, K., Verbauwhede, I.: A digital design flow for secure integrated circuits. IEEE Trans., Computer-aided Design of Integrated Circuits and Systems 25, 1197–1208 (2006)CrossRefGoogle Scholar
  103. 103.
    Sokolov, D., Murphy, J., Bystrov, A., et al.: Design and analysis of dual-rail circuits for security applications. IEEE Trans., Computers 54, 449–460 (2005)CrossRefGoogle Scholar
  104. 104.
    Yamaoka, H., Yoshida, H., Ikeda, M., et al.: A dual-rail PLA with 2-input logic cells. In: Proc. ESSCIRC 2002, pp. 203–206 (2002)Google Scholar
  105. 105.
    Stan, M.R., Franzon, P.D., Goldstein, S.C., et al.: Molecular electronics: from devices and interconnect to circuits and architecture. Proc. IEEE 91, 1940–1957 (2003)CrossRefGoogle Scholar
  106. 106.
    Kouzaev, G.A.: Research and development of ultra high-speed quasineural logical circuits for the field signals in VLSI. Techn. Report to the Russian Foundation on Basic Research, Grant No 94-02-04979a. Information Bulletin of RFBR 4(2), 488 (1996) (in Russian)Google Scholar
  107. 107.
    Kouzaev, G.A.: Development of physical fundamentals of new high-dense integrated circuits on collective effects for topologically modulated signals. Techn. Report to the Russian Foundation on Basic Research, Grant No 96-02-1744a. Information Bulletin of RFBR 6(2), 355 (1998) (in Russian) Google Scholar
  108. 108.
    S.N. Yanushkevich, V.P. Shmerko, and S. E. Lyshevski, Logic Design of NanoICs. CRC Press (2005)Google Scholar
  109. 109.
    Farazmand, N., Tahoori, M.B.: Online detection of multiple faults in crossbar nano-architectures using dual rail implementations. In: Proc. 2009 IEEE/ACM Int. Symp. Nanoscale Archtectures, pp. 79–82 (2009)Google Scholar
  110. 110.
    Narahara, K., Otsuji, T.: A traveling-wave time-division demultiplexer. Jpn. J. Appl. Phys. 38, 4021–4026 (1999)CrossRefGoogle Scholar
  111. 111.
    Narahara, K., Otsuji, T.: Characterization of wave propagation on traveling-wave field effect transistors. Jpn. J. Appl. Phys. 37, 6328–6339 (1998)CrossRefGoogle Scholar
  112. 112.
    Suntives, A., Abhari, R.: Dual-mode high-speed data transmission using substrate integrated waveguide interconnects. In: Proc. 16th IEEE Elect. Performance Electron. Packag., Atlanta, GA, October 29-31, pp. 215–218 (2007)Google Scholar
  113. 113.
    Suntives, A., Abhari, R.: Ultra-high speed multichannel data transmission using hybrid substrate integrated waveguides. IEEE Trans., Microw. Theory Tech. 56, 1973–1984 (2008)CrossRefGoogle Scholar
  114. 114.
    Guckenberger, D., Schuster, C., Kwark, Y., et al.: On-chip crosstalk mitigation for densely packed differential striplines using via fence enclosures. El. Lett. 41(7), 412–414 (2005)CrossRefGoogle Scholar
  115. 115.
    Sakagami, I., Miki, N., Nagai, N., et al.: Digital frequency multipliers using multisection two-strip coupled line. IEEE Trans., Microw. Theory Tech. 29, 118–122 (1981)CrossRefGoogle Scholar
  116. 116.
    Iluishenko, V.N., Avdochenko, B.I., Baranov, V.Y., et al.: Picosecond Impulse Techniques. Energoatomizdat Publ., Moscow (1993) (in Russian)Google Scholar
  117. 117.
    Lujambio, A., Arnedo, I., Chudzik, M., et al.: Dispersive delay line with effective transmission-type operation in coupled-line technology. IEEE Trans., Microw. Wireless Comp. Lett. 21, 459–461 (2011)CrossRefGoogle Scholar
  118. 118.
    Nikolskyi, V.V., Nikolskaya, T.I.: Electrodynamics and Wave Propagation. Nauka, Moscow (1987) (in Russian)Google Scholar
  119. 119.
    Mashkovzev, B.M., Zibisov, K.N., Emelin, B.F.: Theory of Waveguides. Nauka, Moscow (1966) (in Russian)Google Scholar
  120. 120.
    Collin, R.E.: Foundation of Microwave Engineering. John Wiley & Sons (2001)Google Scholar
  121. 121.
    Model, A.M.: Microwave Filters in Radio Relay Systems. Svyaz Publ., Moscow (1967) (in Russian) Google Scholar
  122. 122.
    Behe, R., Brachat, P.: Compact duplexer-polarizer with semicircular waveguide. IEEE Trans., Antennas Prop. 39, 1222–1224 (1991)CrossRefGoogle Scholar
  123. 123.
    Tuzbekov, A.R., Goldberg, B.K.: Wide bandwidth waveguide duplexer of a small cross-section for the G-frequencies. In: Proc. 4th All-Russia Conf. Radiolocation and Radio Telecommunication, Moscow, IRE RAS, November 29- December 3, pp. 887–895 (2010) (in Russian) Google Scholar
  124. 124.
    Pisano, G., Melhuish, S., Savini, G., et al.: A broadband W-band polarization rotator with very low cross polarization. IEEE Microw. Wireless Comp. Lett. 21, 127–129 (2011)CrossRefGoogle Scholar
  125. 125.
    Wang, W., Gong, Y., Yu, G., et al.: Mode discriminator based on mode-selective coupling. IEEE Trans., Microw. Theory Tech. 51, 55–63 (2003)CrossRefGoogle Scholar
  126. 126.
    Alessandri, F., Comparini, M., Vitulli, F.: Low-loss filters in rectangular waveguide with rigorous control of spurious responses through a smart modal filter. In: 2001 IEEE MTT-S Microw. Symp. Dig., pp. 1615–1617 (2001)Google Scholar
  127. 127.
    Harms, P.H., Mittra, R.: Equivalent circuits for multiconductor microstrip bend discontinuities. IEEE Trans., Microw. Theory Tech. 41, 62–69 (1993)CrossRefGoogle Scholar
  128. 128.
    Bockelman, D.E., Eisenstadt, W.R.: Combined differential and common-mode scattering parameters: theory and simulation. IEEE Trans., Microw. Theory Tech. 43, 1530–1539 (1995)CrossRefGoogle Scholar
  129. 129.
    Shiue, G.-H., Guo, W.-D., Liu, L.-S., et al.: Circuit modeling and noise reduction for bent differential transmission lines. In: Proc. IEEE 13th Topical Meeting El. Performance of Electron. Pack., pp. 143–145 (2004)Google Scholar
  130. 130.
    Hagmann, J.H., Dickmann, S.: Determination of mode conversation on differential lines. In: Proc. Int. Symp. EMC Europe 2008, pp. 1–5 (2008)Google Scholar
  131. 131.
    Chuang, H.-H., Wu, T.-L.: A novel ground resonator technique to reduce common-mode radiation on slot-crossing differential signals. IEEE Microw. Wireless Comp. Lett. 20, 660–662 (2010)CrossRefGoogle Scholar
  132. 132.
    Wu, S.-J., Tsai, C.-H., Wu, T.-L., et al.: A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure. IEEE Trans., Microw. Theory Tech. 57, 848–855 (2009)CrossRefGoogle Scholar
  133. 133.
    De Paulis, F., Orlandi, A., Raimondo, L., et al.: Common mode filtering performances of planar EBG structures. In: Proc. Int. Symp. EMC Europe 2009, pp. 86–90 (2009)Google Scholar
  134. 134.
    Tsai, C.-H., Wu, T.-L.: A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials. IEEE Trans., Microw. Theory Tech. 58, 195–202 (2010)CrossRefGoogle Scholar
  135. 135.
    Gazda, C., Ginste, D.V., Rodiger, H., et al.: A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips. IEEE Trans., Microw. Theory Tech. 43, 969–978 (2010)Google Scholar
  136. 136.
    Wu, C.-H., Wang, C.-H., Chen, C.H.: Balanced coupled-resonator bandpass filters using multisection resonators for common mode suppression and stopband extension. IEEE Trans., Microw. Theory Tech. 55, 1756–1763 (2007)CrossRefGoogle Scholar
  137. 137.
    Saitou, A., Ahn, K.P., Aoki, H., et al.: Differential mode bandpass filters with four coupled lines embedded in self-complementary antennas. IEICE Trans., Electron. E90-C(7), 1524–1532 (2007)CrossRefGoogle Scholar
  138. 138.
    Lim, T.B., Zhu, L.: A differential-mode wideband bandpass filter on microstrip line for UWB application. IEEE Microw. Wireless Comp. Lett. 19, 632–634 (2009)CrossRefGoogle Scholar
  139. 139.
    Lim, T.B., Zhu, L.: Highly selective differential-mode wideband bandpass filter for UWB application. IEEE Microw. Wireless Comp. Lett. 21, 133–135 (2011)CrossRefGoogle Scholar
  140. 140.
    Gunston, M.A.R.: Microwave Transmission Line Impedance Data. Van Nostrand Reinhold Company Ltd (1972)Google Scholar
  141. 141.
    Laermans, E., De Geest, J., De Zutter, D., et al.: Modeling differential via holes. IEEE Trans., Adv. Pack. 24, 357–363 (2001)CrossRefGoogle Scholar
  142. 142.
    Wang, C., Drewniak, J.L., Fan, J., et al.: Transmission lines modeling of vias in differential signals. In: Int. Symp. Electromag. Compatibility, EMC 2002, pp. 249–252 (2002)Google Scholar
  143. 143.
    Antonini, G., Scogna, A.C., Orlandi, A.: S-parameters characterization of through, blind, and buried via holes. IEEE Trans., Mob. Comp. 2, 174–184 (2003)CrossRefGoogle Scholar
  144. 144.
    Wang, C.-C., Kuo, C.-W., Kuo, C.-C.: A time-domain approach for extracting broadband macro-π models of differential via-holes. IEEE Trans., Adv. Pack., 789–797 (2006)Google Scholar
  145. 145.
    Cao, Y., Simonovich, L., Zhang, Q.-J.: A broadband and parametric model of differential via holes using space-mapping neural network. IEEE Microw. Wireless Comp. Lett. 19, 533–535 (2009)CrossRefGoogle Scholar
  146. 146.
    Rimolo-Donadio, R., Duan, X., Bruns, H.-D., et al.: Differential to common mode conversation due to asymmetric ground via configuration. In: Proc. SPI 2009, pp. 1–4 (2009)Google Scholar
  147. 147.
    Huang, J., Wu, K., Kuroki, F., et al.: Computer-aided design and optimization of NRF-guide mode suppressors. IEEE Trans., Microw. Theory Tech. 44, 905–910 (1996)CrossRefGoogle Scholar
  148. 148.
    Baum, C.E.: Use of the H 0,1 mode in circular waveguide for microwave pulse compression. Circuit and Electromagnetic System Design Notes, Note 64 (October 30, 2009)Google Scholar
  149. 149.
    Moraes, M.O., Borges, F.R., Hernandez-Figueroa, H.E.: Efficient technique for suppression of undesirable modes in dielectric resonator filters. In: Proc. Microw. Optoelectronics Conf., pp. 775–777 (2009)Google Scholar
  150. 150.
    Weily, A.R., Mohan, A.S.: Microwave filters with improved spurious performance based on sandwiched conductor dielectric resonators. IEEE Trans., Microw. Theory Tech. 49, 1501–1507 (2001)CrossRefGoogle Scholar
  151. 151.
    Xiao, J.K., Chu, Q.-X., Huang, H.-F.: New wideband microwave bandpass filter using single triangular patch resonator with low permittivity substrate. In: Proc. ICCS 2008, pp. 608–612 (2008)Google Scholar
  152. 152.
    Thumm, M.: High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbation. Int. J. Electron. 57, 1225–1246 (1984)CrossRefGoogle Scholar
  153. 153.
    Stein, D.A., Vernon, R.J.: A single period TE02 – TE01 mode converters in a highly overmoded circular waveguide. IEEE Trans., Microw. Theory Tech. 39, 1301–1306 (1991)Google Scholar
  154. 154.
    Li, H., Thumm, M.: Mode conversation due to curvature in corrugated waveguides. Int. J. Electronics 71(2), 333–347 (1991)CrossRefGoogle Scholar
  155. 155.
    Yang, S., Li, H.: Optimization of novel high-power millimeter-wave TM01 – TE01 mode converters. IEEE Trans., Microw. Theory Tech. 45, 552–554 (1997)CrossRefGoogle Scholar
  156. 156.
    Zemlaykov, V.V., Zargano, G.F., Sinaykovskyi, G.P.: Mode transformation due to curvature and diameter variations in smooth-wall circular waveguides. In: Proc. MSMW 2004 Symp., pp. 647–649 (2004)Google Scholar
  157. 157.
    Katsenelenbaum, B.Z., Del Rio, L.M., Pereyaslavetz, M., Thumm, M.: Theory of Nonuniform Waveguides: the Cross-section Method, Inst. of Engineering and Technology (1999)Google Scholar
  158. 158.
    Luneville, E., Krieg, J.-M., Giguet, E.: An original approach to mode converter optimum design. IEEE Trans., Microw. Theory Tech. 46, 1–8 (1998)CrossRefGoogle Scholar
  159. 159.
    James, G.L.: Analysis and design of TE11 – HE11 corrugated cylindrical waveguide mode converters. IEEE Trans., Microw. Theory Tech. 29, 1059–1066 (1981)CrossRefGoogle Scholar
  160. 160.
    James, G.L., Thomas, B.M.: TE11 to HE11 cylindrical waveguide mode converters using ring-loaded slots. IEEE Trans., Microw. Theory Tech. 30, 278–285 (1982)CrossRefGoogle Scholar
  161. 161.
    Haq, T.U., Webb, K.J., Gallagher, N.C.: Optimized irregular structures for spatial- and temporal-field transformation. IEEE Trans., Microw. Theory Tech. 46, 1856–1867 (1998)CrossRefGoogle Scholar
  162. 162.
    Shestopalov, V.P., Kirilenko, A.A., Rud, L.A.: Resonant Scattering of Waves. Waveguide Discontinuities, vol. 2. Naukova Dumka (1986)Google Scholar
  163. 163.
    Kirilenko, A.A., Rud, L.A., Tkachenko, V.I.: Nonsymmetrical H-plane corners for TE01 – TEq0-mode conversion in rectangular waveguides. IEEE Trans., Microw. Theory Tech. 54, 2471–2477 (2006)CrossRefGoogle Scholar
  164. 164.
    Katsenelenbaum, B.Z., Korshunova, E.N., Pangonis, L.I., et al.: Synthesis of a converter for guided wave fields. Radiotekhnika i Elektronika 27, 2373–2380 (1982)MathSciNetGoogle Scholar
  165. 165.
    Shcherbak, V.V.: Broadband regime of a conversation for TEn,0 -modes on the cascade of three strip diaphragms. In: Proc. 2010 Int. Kharkov Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter-waves (MSMW), pp. 1–3 (2010)Google Scholar
  166. 166.
    Zemlaykov, V.V., Zargano, G.F.: Mode transformers of longitudinal diaphragms in waveguides of complex cross-section. In: Proc. MSMW 2007 Symp., Kharkov, Ukraine, June 25-30, pp. 657–659 (2007)Google Scholar
  167. 167.
    Denisov, G.G., Chirkov, A.V., Belousov, V.I., et al.: Millimeter wave multi-mode transmission line components. J. Infrared Milli. Terahz Waves 32, 343–357 (2011)CrossRefGoogle Scholar
  168. 168.
    Levinson, D.S., Rubinstein, I.: A technique for measuring individual modes propagating in overmoded waveguide. IEEE Trans., Microw. Theory Tech. 14, 310–322 (1966)CrossRefGoogle Scholar
  169. 169.
    Kasparek, W., Muller, G.A.: The wavenumber spectrometer - An alternative to the directional coupler for multimode analysis in oversized waveguide. Int. J. Electron. 65, 5–20 (1988)CrossRefGoogle Scholar
  170. 170.
    Chattopadhyay, C., Ward, J.S., Llombert, N., et al.: Submillimeter-wave 90° polarization twists for integrated waveguide circuits. IEEE Microw. Wireless Comp. Lett. 20, 592–594 (2010)CrossRefGoogle Scholar
  171. 171.
    Lin, W.: Microwave filters employing a single cavity excited in more than one mode. J. Appl. Phys. 22, 989–1011 (1951)zbMATHCrossRefGoogle Scholar
  172. 172.
    Atia, A.E., Williams, A.E.: New types of bandpass filters for satellite transponders. COMSAT Tech. Rev. 1, 21–43 (1971)Google Scholar
  173. 173.
    Williams, A.E., Atia, A.E.: Dual-mode canonical waveguide filters. IEEE Trans., Microw. Theory Tech. 25, 1021–1026 (1977)CrossRefGoogle Scholar
  174. 174.
    Liang, X.-P., Zaki, K.A., Atia, A.E.: Dual mode coupling by square corner cut in resonators and filters. IEEE Trans., Microw. Theory Tech. 40, 2294–2302 (1992)CrossRefGoogle Scholar
  175. 175.
    Levy, R.: The relationship between dual mode cavity cross-coupling and waveguide polarizers. IEEE Trans., Microw. Theory Tech. 43, 2614–2620 (1995)CrossRefGoogle Scholar
  176. 176.
    Ruiz-Cruz, J.A., Zhang, Y., Monteo-Garai, J.R., et al.: Longitudinal dual-mode filters in rectangular waveguide. In: 2008 IEEE Int. Microw. Symp. Dig., pp. 631–634 (2008)Google Scholar
  177. 177.
    Orta, R., Savi, P., Tascone, R., et al.: Rectangular waveguide dual-mode filters without discontinuities inside the resonators. IEEE Microw. Guided Lett. 5, 302–304 (1995)CrossRefGoogle Scholar
  178. 178.
    Guglielmi, M., Molina, R.C., Melcon, A.A.: Dual-mode circular waveguide filters without tuning screws. IEEE Microw. Guided Lett. 2, 457–458 (1992)CrossRefGoogle Scholar
  179. 179.
    Yoneda, N., Miyazaki, M.: Analysis and design of grooved waveguide dual-mode filters. In: 2001 IEEE MTT-S Dig., pp. 1791–1794 (2001)Google Scholar
  180. 180.
    Amari, S., Rosenberg, U.: Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design. IEEE Trans., Microw. Theory Tech. 53, 3135–3141 (2005)CrossRefGoogle Scholar
  181. 181.
    Chen, X., Hao, Z., Hong, W., et al.: Planar asymmetric dual-mode filters based on substrate integrated waveguide (SIW). In: 2005 IEEE MTT-S Int. Microw. Symp. Dig., pp. 949–952 (2005)Google Scholar
  182. 182.
    Fedziusko, S.J.: Dual-mode dielectric resonator loaded cavity filters. IEEE Trans., Microw. Theory Tech. 30, 1311–1316 (1982)CrossRefGoogle Scholar
  183. 183.
    Fumagalli, M., Macchiarella, G., Resnati, G.: Dual-mode filters for cellular base station using metallized dielectric resonators. In: IEEE MTT-S Int. Microw. Dig., vol. 3, pp. 1799–1802 (2001)Google Scholar
  184. 184.
    Accationo, L., Bertin, G., Mongiardo, M., et al.: Dual-mode filters with grooved/splitted dielectric resonators for cellular-radio base stations. IEEE Trans., Microw. Theory Tech. 50, 2882–2889 (2002)CrossRefGoogle Scholar
  185. 185.
    Wolff, I.: Microstrip passband filter using degenerate modes of a microstrip ring resonator. El. Lett. 8(12), 302–303 (1972)CrossRefGoogle Scholar
  186. 186.
    Curtis, J.A., Fiedziusko, S.J.: Multi-layered planar filters based on aperture coupled, dual mode microstrip or stripline resonators. In: 1992 IEEE MTT-S Dig., pp. 1203–1206 (1992)Google Scholar
  187. 187.
    Hong, J.-S., Li, S.: Theory and experiment of dual-mode microstrip triangular patch resonators and filters. IEEE Trans., Microw. Theory Tech. 50, 1237–1243 (2004)CrossRefGoogle Scholar
  188. 188.
    Lugo, A., Papapolymerou, J.: Bandpass filter design using a microstrip triangular loop resonator with dual-mode operation. IEEE Microw. Wireless Comp. Lett. 15, 475–477 (2005)CrossRefGoogle Scholar
  189. 189.
    Gorur, A., Karpuz, C.: Miniature dual-mode microstrip filters. IEEE Microw. Wireless Comp. Lett. 17, 37–39 (2007)CrossRefGoogle Scholar
  190. 190.
    Zhu, L., Wecowski, P.M., Wu, K.: New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction. IEEE Trans., Microw. Theory Tech. 47, 650–654 (1999)CrossRefGoogle Scholar
  191. 191.
    Chen, W.-Y., Chang, S.-J., Weng, M.-H., et al.: A novel miniature dual-mode filter based on modified Sierpinski fractal resonator. In: Proc. APMC 2008, pp. 1–4 (2008)Google Scholar
  192. 192.
    Freedman, M.H., Kitaev, A., Larsen, M.J., et al.: Topological quantum computation. Bull. Amer. Math. Soc. 40, 31–38 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  193. 193.
    Branford, W.R., Ladak, S., Read, D.E., et al.: Emerging chirality in artificial spin ice. Science 335, 1597–1600 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunications Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations