Advertisement

Basic Electromagnetics

  • Guennadi A. Kouzaev
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 169)

Abstract

This Chapter is on the basics of electromagnetism needed for further understanding of advanced electromagnetics and its applications. Taking into account a number of contributions in this field [1]-[25], our material is given in a concise manner to remind the Readers only the main electromagnetic (EM) equations. Among them are those given for static electricity, stationary magnetism, and the Maxwell and wave equations. The boundary conditions and boundary value problems are considered and the reflection of plane waves is studied as an example of these problems. Additionally to this material traditionally included into the books on electromagnetism, the motion of charged particles and dipoles is considered from the classical and semi-classical point of view, and new EMquantum- mechanical equations based on the use of the Hertz vectors and the particle wave functions are introduced. References -75. Figures -13. Pages -49.

Keywords

Static Electric Field Dipolar Molecule Hertz Vector Alternate Current Field Transmission Line Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism. Dover (1954)Google Scholar
  2. 2.
    Heaviside, O.: Electromagnetic Waves. Taylor & Francis (1889), http://www.archive.org
  3. 3.
    Jackson, J.D.: Classical Electrodynamics. John Wiley & Sons (1999)Google Scholar
  4. 4.
    Balanis, C.A.: Advanced Engineering Electromagnetics. John Wiley (1989)Google Scholar
  5. 5.
    Smythe, W.R.: Static and Dynamic Electricity. McGraw-Hill (1968)Google Scholar
  6. 6.
    Stewart, J.V.: Intermediate Electromagnetic Theory. World Scientific (2001)Google Scholar
  7. 7.
    Shekunoff, S.A.: Electromagnetic Field. Blaisdell Publ. Comp. (1963)Google Scholar
  8. 8.
    Marcuvitz, N.: Waveguide Handbook. Inst. of Eng. and Techn. Publ. (1986)Google Scholar
  9. 9.
    Mashkovzev, B.M., Zibisov, K.N., Emelin, B.F.: Theory of Waveguides. Nauka, Moscow (1966) (in Russian)Google Scholar
  10. 10.
    Katsenelenbaum, B.Z.: High-frequency Electrodynamics. Wiley-vch Verlag Gmbh (2006)Google Scholar
  11. 11.
    Vaganov, R.B., Katsenelenbaum, B.Z.: Foundation of the Diffraction Theory. Nauka, Moscow (1982) (in Russian)Google Scholar
  12. 12.
    Nikolskyi, V.V., Nikolskaya, T.I.: Electrodynamics and Wave Propagation. Nauka, Moscow (1987) (in Russian)Google Scholar
  13. 13.
    Collin, R.E.: Foundation of Microwave Engineering. John Wiley & Sons (2001)Google Scholar
  14. 14.
    Felsen, L.B., Marcuvitz, N.: Radiation and Scattering of Waves. Prentice-Hall (1973)Google Scholar
  15. 15.
    Taflove, A.T., Hagness, S.C.: Computational Electrodynamics. Artech House (2005)Google Scholar
  16. 16.
    Sadiku, M.N.O.: Numerical Techniques in Electromagnetics. CRC Press (2001)Google Scholar
  17. 17.
    Lewin, L.: Theory of Waveguides. Newnes-Buttertworths, London (1975)Google Scholar
  18. 18.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium. IEEE Trans., Antennas Propag. 14, 302–307 (1966)zbMATHGoogle Scholar
  19. 19.
    Mittra, R. (ed.): Computer Techniques for Electromagnetics. Pergamon Press (1973)Google Scholar
  20. 20.
    Garg, R.: Analytical and Computational Methods in Electromagnetics. Artech House (2009)Google Scholar
  21. 21.
    Nikolskii, V.V.: Variational Methods for Inner Boundary Value Problems of Electrodynamics. Nauka Publ., Moscow (1967) (in Russian)Google Scholar
  22. 22.
    Harrington, R.F.: Field Computation by Moment Methods. IEEE Press (1993)Google Scholar
  23. 23.
    Hoffmann, R.K.: Handbook of Microwave Integrated Circuits. Artech House (1987)Google Scholar
  24. 24.
    Kompa, G.: Practical Microstrip Design and Applications. Artech House (2005)Google Scholar
  25. 25.
    Edwards, T.C., Steer, M.B.: Foundation of Interconnect and Microstrip Design. J. Wiley & Sons, Ltd. (2000)Google Scholar
  26. 26.
    Whites, K.W.: Visual Electromagnetics for MathCAD: Electronic Supplement for Introduction to Electromagnetics of K.W. Whites. McGraw-Hill (1998)Google Scholar
  27. 27.
    Marcelli, R., Nikitov, S.A. (eds.): Nonlinear Microwave Signal Processing: Towards a New Range of Devices. NATO ASI Series, 3. High Technology, vol. 20. Kluwer Academic Publishing, Dordrecht (1996)Google Scholar
  28. 28.
    Golovanov, Makeeva, G.S.: Simulations of Electromagnetic Wave Interactions with Nano-grids in Microwave and Terahertz Frequencies. Nauka (in print, 2012) (in Russian) Google Scholar
  29. 29.
    Makeeva, G.S., Golovanov, O.A., Pardavi-Horvath, M., Kouzaev, G.A.: A method of autonomous blocks partially filled by nonlinear gyromagnetic medium for nanoelectromagnetic applications. In: Proc. 8th Int. Conf. Appl. of El. Eng., Houston, USA, April 30-May 2, pp. 204–207 (2009)Google Scholar
  30. 30.
    Makeeva, G.S., Golovanov, O.A., Pardavi-Horvath, M., Kouzaev, G.A.: Decomposition approach to nonlinear diffraction problems of nanoelectromagnetics and nanophotonics using autonomous blocks with Floquet channels. In: Proc. 7th Int. Conf. Appl. El. Eng., AEE 2008, pp. 31–35 (2008)Google Scholar
  31. 31.
    Deleonibus, S. (ed.): Electronic Device Architectures for the Nano-CMOS Era. World Sci (2008)Google Scholar
  32. 32.
    Tour, J.M.: Molecular Electronics. World Sci. (2003)Google Scholar
  33. 33.
    Kouzaev, G.A.: Hertz vectors and the electromagnetic-quantum equations. Modern Phys. Lett. B 24, 2117–2129 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Levine, H., Moniz, E.J., Sharp, D.H.: Motion of extended charges in classical electrodynamics. Am. J. Phys. 45, 75–78 (1977)CrossRefGoogle Scholar
  35. 35.
    Rohlich, F.: The dynamics of a charged particle and the electron. Am. J. Phys. 65, 1051–1056 (1997)CrossRefGoogle Scholar
  36. 36.
    Kroemer, H.: Quantum Mechanics. Prentice-Hall (1994)Google Scholar
  37. 37.
    Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topological Methods in Nonlinear Analysis 11, 283–293 (1998)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Ginbre, J., Velo, G.: Long range scattering for the Maxwell-Schrödinger system with large magnetic field data and small Schrödinger data, vol. 42, pp. 421-459. Publ. RIMS, Kyoto Univ. (2006)Google Scholar
  39. 39.
    Yang, J., Sui, W.: Solving Maxwell-Schrödinger equations for analyses of nano-scale devices. In: Proc. 37th Eur. Microw. Conf., pp. 154–157 (2007)Google Scholar
  40. 40.
    Pierantoni, L., Mencarelli, D., Rozzi, T.: A new 3-D transmission line matrix scheme for the combined Schrödinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices. IEEE Trans., Microw. Theory Tech. 56, 654–662 (2008)CrossRefGoogle Scholar
  41. 41.
    Pieratoni, L., Mencarelli, D., Rozzi, T.: Boundary immitance operators for the Schrödinger-Maxwell problem of carrier dynamics in nanodevices. IEEE Trans., Microw. Theory Tech. 57, 1147–1155 (2009)CrossRefGoogle Scholar
  42. 42.
    Mastorakis, N.E.: Solution of the Schrödinger-Maxwell equations via finite elements and genetic algorithms with Nelder-Mead. WSEAS Trans. Math. 8, 169–176 (2009)MathSciNetGoogle Scholar
  43. 43.
    Attaf, M.T.: Error analysis and Hertz vector approach for an electromagnetic interaction between a line current and a conducting plate. Int. J. Numer. 16, 249–260 (2003)zbMATHCrossRefGoogle Scholar
  44. 44.
    Gough, W.: An alternative approach to the Hertz vector. PIER 12, 205–217 (1996)Google Scholar
  45. 45.
    Sein, J.J.: Solutions to time-harmonic Maxwell equations with a Hertz vector. Am. J. Phys. 57, 834–839 (1989)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Born, M., Wolf, E.: Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press (2000)Google Scholar
  47. 47.
    Nowakowski, M.: The quantum mechanical current of the Pauli equation. Am. J. Phys. 67, 916–919 (1999)CrossRefGoogle Scholar
  48. 48.
    Esteban, M.J., Georgiev, V., Séré, E.: Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. 4, 265–281 (1996)zbMATHCrossRefGoogle Scholar
  49. 49.
    Bao, W., Li, X.-G.: An efficient and stable numerical method for the Maxwell-Dirac system. J. Comput. Phys. 199, 663–687 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Balasubramanian, K.: Relativistic Effects in Chemistry, Part A. John Wiley & Sons, Inc. (1997)Google Scholar
  51. 51.
    Kapranov, S.A., Kouzaev, G.A.: Relaxation mechanism of microwave heating of near-critical polar gases. Int. J. Thermal Sciences 49(12), 2319–2330 (2010)CrossRefGoogle Scholar
  52. 52.
    Vekstein, G.E.: On the electromagnetic force on a moving dipole. Eur. J. Phys. 18, 113–117 (1997)CrossRefGoogle Scholar
  53. 53.
    Kholometskii, I.L., Missevitch, O.V., Yarman, T.: Electromagnetic force on a moving dipole. Eur. J. Phys. 32, 873–881 (2011)CrossRefGoogle Scholar
  54. 54.
    Gao, Z.: Nonlinear pondermotive force by low frequency waves and nonresonant current drive. Physics of Plasmas 13, 112307-1–112307-6 (2006)Google Scholar
  55. 55.
    Dodin, I.Y., Fisch, N.J.: Particle manipulation with nonadiabatic pondermotive forces. Physics of Plasmas 14, 055901-1–055901-6 (2007)CrossRefGoogle Scholar
  56. 56.
    Eichmann, U., Nubbemeyer, T., Rottke, H., et al.: Acceleration of neutral atoms in strong strong short-pulse laser field. Nature 461, 1261–1264 (2009)CrossRefGoogle Scholar
  57. 57.
    Block, P.A., Bohac, E.A., Miller, R.E.: Spectroscopy of pendular states: The use of molecular complexes in achieving orientation. Phys. Rev. Lett. 68, 1303–1306 (1992)CrossRefGoogle Scholar
  58. 58.
    Kapranov, S.V., Kouzaev, G.A.: Stochasticity in nonlinear pendulum motion of dipoles in electric field. In: Recent Advances in Systems Engineering and Applied Mathematics, pp. 107–111 (2008)Google Scholar
  59. 59.
    Zaslavsky, G.M.: Physics of Chaos in Hamilton Systems. Imperial College Press (1998)Google Scholar
  60. 60.
    Zaslavsky, G.M., Sagdeev, R.Z., Usikov, D.A., et al.: Weak Chaos and Quasi-Regular Patterns. Cambridge University Press (1991)Google Scholar
  61. 61.
    Chirikov, B.V.: Nonlinear Resonance. Novosibirsk State University Publ. (1977) (in Russian)Google Scholar
  62. 62.
    Fradkov, I.: Cybernetical Physics. Springer (2006) (in Russian)Google Scholar
  63. 63.
    Barkai, E., Brown, F., Orrit, M., Yang, H. (eds.): Theory and Evaluation of Single Molecule Signals. World Scientific (2008)Google Scholar
  64. 64.
    Wu, G.: Nonlinearity and Chaos in Molecular Vibrations. Elsevier (2005)Google Scholar
  65. 65.
    Leontovich, M.A.: Investigation on Radiowave Propagation, Part II. Academy of Sci., Moscow (1948)Google Scholar
  66. 66.
    Wang, D.-S.: Limits and validity of the impedance boundary condition on penetrable surfaces. IEEE Trans., Antennas Propag. 35, 453–457 (1987)CrossRefGoogle Scholar
  67. 67.
    Dybdal, R.B., Peters, L., Peake, W.H.: Rectangular waveguides with impedance walls. IEEE Trans., Microw. Theory Tech. 19, 2–9 (1971)CrossRefGoogle Scholar
  68. 68.
    Senior, T.B.A.: Approximate boundary condition. IEEE Trans., Antennas Propag. 29, 826–829 (1981)CrossRefGoogle Scholar
  69. 69.
    Karlsson, I.: Approximate boundary conditions for thin structures. IEEE Trans., Antennas Propag. 57, 144–148 (2009)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Alshits, V.I., Lyubimov, V.N.: Generalization of the Leontovich approximation for electromagnetic fields on a dielectric-metal interface. Physics-Uspekhi 52, 815–820 (2009)CrossRefGoogle Scholar
  71. 71.
    Kurushin, E.P., Nefedov, E.I., Fialkovskyi, A.T.: Diffraction of Waves on Anisotropic Structures. Nauka, Moscow (1975) (in Russian)Google Scholar
  72. 72.
    Kurushin, E.P., Nefedov, E.I.: Electrodynamics of Anisotropic Waveguiding Structures. Nauka, Moscow (1983) (in Russian)Google Scholar
  73. 73.
    Kontorovich, M.I., Astrakhan, M.I., Akimov, V.P., et al.: Electrodynamics of Grid Structures. Radio i Svayaz, Moscow (1987) (in Russian)Google Scholar
  74. 74.
    Yuferev, S.V.: Surface Impedance Boundary Conditions. CRC Press (2010)Google Scholar
  75. 75.
    Demarest, K.R.: Engineering Electromagnetics. Prentice-Hall Int. (1997)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunications Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations