White Dwarfs

  • Rudolf Kippenhahn
  • Alfred Weigert
  • Achim Weiss
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

It is characteristic for configurations involving degenerate matter that mechanical and thermal properties are more or less decoupled from each other. Correspondingly we will discuss these two aspects separately. When dealing with the mechanical problem (including the P and \(\varrho \) stratification, the M–R relation, etc.) one may even go to the limit T → 0. Of course, such cold matter can not radiate at all and it is more appropriate to denote these objects as “black dwarfs”. The thermal properties, on the other hand, are responsible for the radiation and the further evolution of white dwarfs. The evolution indeed leads from a white dwarf (WD) to a black dwarf, since it is – roughly speaking – the consumption of fossil heat stored in the WD which we see at present.

Keywords

Cooling Time White Dwarf Equilibrium Composition Virial Theorem Degenerate Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abazajian, K., et al. (2005): Astron. J., 129, 1755ADSCrossRefGoogle Scholar
  2. Althaus, L.G., Córsico, A.H., Isern, J., García-Berro, E. (2010b): Astron. Astrophys. Rev. 18, 471ADSCrossRefGoogle Scholar
  3. Chandrasekhar, S. (1939): An Introduction to the Study of Stellar Structure (University of Chicago Press, Chicago)Google Scholar
  4. Cox, J.P., Giuli, R.T. (1968): Principles of Stellar Structure, Vols. I, II (Gordon and Breech, New York)Google Scholar
  5. D’Antona, F., Mazzitelli, I. (1989): Astrophys. J. 347, 934ADSCrossRefGoogle Scholar
  6. Hamada, T., Salpeter, E.E. (1961): Astrophys. J. 134, 683MathSciNetADSCrossRefGoogle Scholar
  7. Harris, H.C., Munn, J.A., Kilic, M., Liebert, J., Williams, K.A., von Hippel, T., Levine, S.E., Monet, D.G., Eisenstein, D.J., Kleinman, S.J, Metcalfe, T.S., Nitta, A., Winget, D.E., Brinkmann, J., Fukugita, M., Knapp, G.R., Lupton, R.H., Smith, J.A., Schneider, D.P. (2006): Astron. J., 131, 571ADSCrossRefGoogle Scholar
  8. Isern, J., Mochkovitch, R., García-Berro, E., Hernanz, M. (1997): Astrophys. J. 485, 308ADSCrossRefGoogle Scholar
  9. Kalirai, J.S., Saul Davis, D., Richer, H.B., Bergeron, P., Catelan, M., Hansen, B.M.S., Richer, R.M. (2009): Astrophys. J., 705, 408ADSCrossRefGoogle Scholar
  10. Kilic, M., Leggett, S.K., Tremblay, P.-E., von Hippel, T., Bergeron, P., Harris, H.C., Munn, J.A., Williams, K.A., Gates, E., Farihi, J. (2010): Astrophys. J. Supp. 190, 77ADSCrossRefGoogle Scholar
  11. Liebert, J., Bergeron, P., Holberg, J.B. (2005): Astrophys. JṠupp. 156, 47ADSCrossRefGoogle Scholar
  12. Mestel, L. (1952): Mon. Not. R. Astron. Soc. 112, 583 and 598Google Scholar
  13. Mestel, L., Ruderman, M.A. (1967): Mon. Not. R. Astron. Soc. 136, 27Google Scholar
  14. Panei, J.A., Althaus, L.G.,, Benvenuto, O.G. (2000): Astron. Astrophys. 353, 970ADSGoogle Scholar
  15. Salpeter, E.E. (1961): Astrophys. J. 134, 669MathSciNetADSCrossRefGoogle Scholar
  16. Shaviv, G., Kovetz, A. (1976): Astron. Astrophys. 51, 383ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rudolf Kippenhahn
    • 1
  • Alfred Weigert
    • 2
  • Achim Weiss
    • 3
  1. 1.GöttingenGermany
  2. 2.Universität HamburgHamburgGermany
  3. 3.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations