Advanced Topics and New Directions

Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In this final chapter we provide a concise and brief discussion of other topics not covered in the previous chapters. These topics are more advanced or are the object of active research in the area of adaptive filtering. A brief introduction to each topic and several relevant references for the interested reader are provided.

Keywords

Wireless Sensor Network Posteriori Error Adaptive Filter Impulsive Noise Krein Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Haykin, Signal processing: where physics and mathematics meet. IEEE Signal Process. Mag. 18, 6–7 (2001)CrossRefGoogle Scholar
  2. 2.
    B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces. Parts I and II. IEEE Trans. Autom. Control 41, 18–49 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    B. Hassibi, A.H. Sayed, T. Kailath, \(H\,^{\infty }\) optimality of the LMS algorithm. IEEE Trans. Signal Process. 44, 267–280 (1996)CrossRefGoogle Scholar
  4. 4.
    U. Shaked, Y. Theodor, \(H\,^{\infty }\)-Optimal estimation—a tutorial. Proceedings of IEEE Conference on Decision Control, 1992, pp. 2278–2286Google Scholar
  5. 5.
    H. Rey, L. Rey Vega, S. Tressens, J. Benesty, Variable explicit regularization in affine projection algorithm: robustness issues and optimal choice. IEEE Trans. Signal Process. 55, 2096–2109 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Rupp, A.H. Sayed, A time-domain feedback analysis of filtered-error adaptive gradient algorithms. IEEE Trans. Signal Process. 44, 1428–1439 (1996)CrossRefGoogle Scholar
  7. 7.
    T. Aboulnasr, K. Mayyas, A robust variable step-size LMS-type algorithm: Analysis and simulations. IEEE Trans. Signal Process. 45, 631–639 (1997)CrossRefGoogle Scholar
  8. 8.
    J. Benesty, H. Rey, L. Rey Vega, S. Tressens, A nonparametric VSS NLMS algorithm. IEEE Signal Process. Lett. 13, 581–584 (2006)CrossRefGoogle Scholar
  9. 9.
    C. Paleologu, J. Benesty, S. Ciochina, A variable step-size affine projection algorithm designed for acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 16, 1466–1478 (2008)Google Scholar
  10. 10.
    L. Rey Vega, H. Rey, J. Benesty, S. Tressens, A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process. 56, 1878–1893 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Rey Vega, H. Rey, J. Benesty, S. Tressens, A fast robust recursive least-squares algorithm. IEEE Trans. Signal Process. 57, 1209–1216 (2009)CrossRefGoogle Scholar
  12. 12.
    L. Rey Vega, H. Rey, J. Benesty, S. Tressens, A family of robust algorithms exploiting sparsity in adaptive filters, IEEE Trans. Audio Speech Lang. Process. 17, 572–581 (2009)Google Scholar
  13. 13.
    L. Rey Vega, H. Rey, J. Benesty, A robust variable step-size affine projection algorithm. Elsevier Signal Process. 90, 2806–2810 (2010)MATHCrossRefGoogle Scholar
  14. 14.
    K. Mayyas, A variable step-size affine projection algorithm. Elsevier Digital Signal Process. 20, 502–510 (2010)CrossRefGoogle Scholar
  15. 15.
    H.-C. Shin, A.H. Sayed, W.-J. Song, Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11, 132–135 (2004)CrossRefGoogle Scholar
  16. 16.
    A. Mader, H. Puder, G. Schmidt, Step-size control for acoustic echo cancellation filters. An overview. Elsevier. Signal Process. 80, 1697–1719 (2000)MATHCrossRefGoogle Scholar
  17. 17.
    D. Challa, S. L. Grant, A. Mohammad, Variable regularized fast affine projections. Proceedings of IEEE ICASSP, pp. I-89-I-92, 2007Google Scholar
  18. 18.
    Y. Choi, H. Shin, W. Song, Adaptive regularization matrix for affine projection algorithm. IEEE Trans. Circuits Syst. II 54, 1087–1091 (2007)CrossRefGoogle Scholar
  19. 19.
    W. Yin, A.S. Mehr, A variable regularization method for affine projection algorithm. IEEE Trans. Circuits Syst. II 57, 476–480 (2010)CrossRefGoogle Scholar
  20. 20.
    C. Breining, P. Dreiscitel, E. Hansler, A. Mader, B. Nitsch, H. Puder, T. Schertler, G. Schmidt, J. Tilp, Acoustic echo control. An application of very-high-order adaptive filters. IEEE Signal Process. Mag. 16, 42–69 (1999)Google Scholar
  21. 21.
    M.R. Raghavendra, K. Giridhar, Improving channel estimation in OFDM systems for sparse multipath channels. IEEE Signal Process. Lett. 12, 52–55 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inform. Theory. 56, 5862–5875 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D.L. Duttweiler, Proportionate normalized least mean square adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8, 508–518 (2000)CrossRefGoogle Scholar
  24. 24.
    J. Homer, I. Mareels, C. Hoang, Enhanced detection-guided NLMS estimation of sparse FIR-modeled signal channels. IEEE Trans. Circuits Syst I(53), 1783–1791 (2006)Google Scholar
  25. 25.
    J. Benesty, S.L. Gay, An improved PNLMS algorithm. Proceedings of IEEE ICASSP, 2002, pp. 1881–1884Google Scholar
  26. 26.
    Y. Huang, J. Benesty, J. Chen, Acoustic MIMO Signal Processing (Springer, Berlin, 2006)MATHGoogle Scholar
  27. 27.
    R.K. Martin, W.A. Sethares, R.C. Williamson, C.R. Johnson Jr, Exploiting sparsity in adaptive filters. IEEE Trans. Signal Process. 50, 1883–1894 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Amari, Natural gradient works efficiently in learning. Neural Computation 10, 251–276 (1998)CrossRefGoogle Scholar
  29. 29.
    R.E. Mahoney, R.C. Williamson, Prior knowledge and preferential structures in gradient descent learning algorithms. Journal Mach. Learn. Research 1, 311–355 (2001)Google Scholar
  30. 30.
    E.J. Candes, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 21–30 (2008)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, Y. Gu, A. O. Hero, Sparse LMS for system identification. Proceedings of IEEE ICASSP, pp. 3125–3128, 2009Google Scholar
  32. 32.
    Y. Gu, J. Jian, S. Mei, \(l_{0}\) norm Constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 16, 774–777 (2009)CrossRefGoogle Scholar
  33. 33.
    B. Babadi, N. Kalouptsidis, V. Tarokh, SPARLS: The sparse RLS algorithm. IEEE Trans. Signal Process. 58, 4013–4025 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Y. Kopsinis, K. Slavakis, S. Theodoridis, Online sparse system identification and signal reconstruction using projections onto weighted \(\ell _{1}\) balls. IEEE Trans. Signal Process. 59, 936–952 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    P.J. Huber, Robust Statistics (John Wiley& Sons, New York, 1981)MATHCrossRefGoogle Scholar
  36. 36.
    T. Gänsler, S.L. Gay, M.M. Sondhi, J. Benesty, Double-talk robust fast converging algorithms for network echo cancellation. IEEE Trans. Speech Audio Process. 8, 656–663 (2000)CrossRefGoogle Scholar
  37. 37.
    P. Petrus, Robust Huber adaptive filter. IEEE Trans. Signal Process. 47, 1129–1133 (1999)CrossRefGoogle Scholar
  38. 38.
    Y. Zou, S.C. Chan, T.S. Ng, Least mean \(M\)-estimate algorithms for robust adaptive filtering in impulse noise. IEEE Trans. Circuits Syst. II(47), 1564–1569 (2000)Google Scholar
  39. 39.
    J. Chambers, A. Avlonitis, A robust mixed-norm adaptive adaptive filter algorithm. IEEE Signal Process. Lett. 4, 46–48 (1997)CrossRefGoogle Scholar
  40. 40.
    E.V. Papoulis, T. Stathaki, A normalized robust mixed-norm adaptive algorithm for system identification. IEEE Signal Process. Lett. 11, 56–59 (2004)CrossRefGoogle Scholar
  41. 41.
    A. Swami, Q. Zhao, Y. Hong, L. Tong, Wireless Sensor Networks. Signal Processing and Communication Perspectives (Wiley, West Sussex, 2007)Google Scholar
  42. 42.
    I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40, 102–114 (2002)CrossRefGoogle Scholar
  43. 43.
    C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55, 4064–4077 (2007)MathSciNetCrossRefGoogle Scholar
  44. 44.
    F.S. Cativelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56, 1865–1877 (2008)MathSciNetCrossRefGoogle Scholar
  45. 45.
    C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Trans. Signal Process. 56, 3122–3136 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    I.D. Schizas G. Mateos, G.B. Giannakis, Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process. 57, 2365–2382 (2009)Google Scholar
  47. 47.
    A. Bertrand, M. Moonen, Distributed adaptive node-specific signal estimation in fully connected sensor networks - Part I: Sequential node updating. IEEE Trans. Signal Process. 58, 5277–5291 (2010)MathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Bertrand, M. Moonen, Distributed adaptive node-specific signal estimation in fully connected sensor networks - Part II: Simultaneous and asynchronous node updating. IEEE Trans. Signal Process. 58, 5292–5306 (2010)MathSciNetCrossRefGoogle Scholar
  49. 49.
    S. Chouvardas, K. Slavakis, S. Theodoridis, Adaptive robust distributed learning in diffusion sensor networks. IEEE Trans. Signal Process. 59, 4692–4707 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.School of EngineeringUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations