Using Network Science to Define a Dynamic Communication Topology for Particle Swarm Optimizers

  • Marcos A. C. Oliveira Junior
  • Carmelo J. A. Bastos Filho
  • Ronaldo Menezes
Part of the Studies in Computational Intelligence book series (SCI, volume 424)

Abstract

We propose here to use network sciences, specifically an approach based on the Barabási-Albert model, to define a dynamic communication topology for Particle Swarm Optimizers. We compared our proposal to previous approaches, including a simpler Barabási-Albert-based approach and other most used approaches, and we obtained better results in average for well known benchmark functions.

Keywords

Particle Swarm Optimization Particle Swarm Particle Swarm Optimization Algorithm Preferential Attachment Benchmark Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002) doi:10.1103/RevModPhys.74.47Google Scholar
  2. 2.
    Barabasi, A.L.: Linked, 1st edn. Perseus Publishing (2002)Google Scholar
  3. 3.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bastos-Filho, C., Andrade, J., Pita, M., Ramos, A.: Impact of the quality of random numbers generators on the performance of particle swarm optimization. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 4988–4993 (2009), doi:10.1109/ICSMC.2009.5346366Google Scholar
  5. 5.
    Bianconi, G., Barabasi, A.L.: Competition and multiscaling in evolving networks. EPL (Europhysics Letters) 54(4), 436–442 (2001), http://dx.doi.org/10.1209/epl/i2001-00260-6, doi:10.1209/epl/i2001-00260-6CrossRefGoogle Scholar
  6. 6.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: IEEE Swarm Intelligence Symposium, SIS 2007, pp. 120–127 (2007), doi:10.1109/SIS.2007.368035Google Scholar
  7. 7.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000), http://link.aps.org/doi/10.1103/PhysRevLett.85.5468, doi:10.1103/PhysRevLett.85.5468CrossRefGoogle Scholar
  8. 8.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002), doi:10.1109/4235.985692CrossRefGoogle Scholar
  9. 9.
    Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000), http://link.aps.org/doi/10.1103/PhysRevLett.85.4626, doi:10.1103/PhysRevLett.85.4626CrossRefGoogle Scholar
  10. 10.
    Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001), http://link.aps.org/doi/10.1103/PhysRevLett.86.3682, doi:10.1103/PhysRevLett.86.3682CrossRefGoogle Scholar
  11. 11.
    Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88 (2000), doi:10.1109/CEC.2000.870279Google Scholar
  12. 12.
    Ferreira de Carvalho, D., Bastos-Filho, C.J.A.: Clan particle swarm optimization. International Journal of Intelligent Computing and Cybernetics 2(2), 197–227 (2009), http://dx.doi.org/10.1108/17563780910959875, doi:10.1108/17563780910959875MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Godoy, A., Von Zuben, F.: A complex neighborhood based particle swarm optimization. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 720–727 (2009), doi:10.1109/CEC.2009.4983016Google Scholar
  14. 14.
    Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, E. (ed.) The Ubiquity of Chaos, pp. 233–238. AAAS Publications (1990)Google Scholar
  15. 15.
    Kennedy, J., Eberhart, R.: Particle swarm optimization, vol. 4, pp. 1942–1948 (1995), http://dx.doi.org/10.1109/ICNN.1995.488968, doi:10.1109/ICNN.1995.488968
  16. 16.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance, pp. 1671–1676 (2002), doi:10.1109/CEC.2002.1004493Google Scholar
  17. 17.
    Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York (2010)MATHGoogle Scholar
  18. 18.
    Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31(1), 64–68 (2002), http://dx.doi.org/10.1038/ng881, doi:10.1038/ng881CrossRefGoogle Scholar
  19. 19.
    Watts, D.J.: Small worlds: The dynamics of networks between order and randomness. Princeton University Press, Princeton (1999)Google Scholar
  20. 20.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998), http://dx.doi.org/10.1038/30918, doi:10.1038/30918CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcos A. C. Oliveira Junior
    • 1
  • Carmelo J. A. Bastos Filho
    • 1
  • Ronaldo Menezes
    • 2
  1. 1.University of PernambucoRecifeBrazil
  2. 2.Florida Institute of TechnologyMelbourneUSA

Personalised recommendations