A Novel Framework for Complex Networks and Chronic Diseases

  • Philippe J. Giabbanelli
Part of the Studies in Computational Intelligence book series (SCI, volume 424)


Complex networks have provided a wealth of information regarding infectious diseases, for example by understanding how the network structure impacts the basic reproduction number or immunization strategies. However, researchers have struggled to translate this knowledge to chronic diseases, where social networks are at play but broad societal factors also have an important role. This translation is becoming urgent given the increasing prevalence, and the escalating healthcare costs, of conditions such as obesity. In this paper,we provide a mathematical framework that enables researchers to represent both the network and societal aspects of chronic disease, thereby facilitating this translation effort. Our framework uses Complex Networks to represent the population,where influences between neighboring nodes are modelled through Fuzzy Cognitive Maps that account for societal effects. Applying our framework to real-world cases, possibly through processes such as Group Model Building, may facilitate the better direction of policy towards the management of chronic diseases.


Complex Network Cellular Automaton Social Determinant Basic Reproduction Number Immunization Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pastor-Satorras, R., Vespignani, A.: Phys. Rev. E 65(3), 036104 (2002)CrossRefGoogle Scholar
  2. 2.
    Piccardi, C., Casagrandi, R.: Phys. Rev. E 77(2), 026113 (2008)CrossRefGoogle Scholar
  3. 3.
    Crepey, P., Alvarez, F.P., Barthelemy, M.: Phys. Rev. E 73(4), 046131 (2006)CrossRefGoogle Scholar
  4. 4.
    Boily, M., Asghar, Z., Garske, T., Ghani, A., Poulin, R.: Math. Popul. Stud. 14, 237 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Flegal, K., Carroll, M., Ogden, C., Curtin, L.: JAMA 303, 235 (2010)CrossRefGoogle Scholar
  6. 6.
    Sturmer, T., Gunther, K.P., Brenner, H.: Journal of Clinical Epidemiology 53, 307 (2000)CrossRefGoogle Scholar
  7. 7.
    Sturm, R.: Health Affairs 21(2), 245 (2002)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Beydoun, M.A., Liang, L., Caballero, B., Kumanyika, S.K.: Obesity 16, 2323 (2008)CrossRefGoogle Scholar
  9. 9.
    Hammond, R.A.: Current Opinion in Endocrinology, Diabetes and Obesity 17, 467 (2010)CrossRefGoogle Scholar
  10. 10.
    Block, J.P., DeSalvo, K.B., Fisher, W.P.: Preventive Medicine 36, 669 (2003)CrossRefGoogle Scholar
  11. 11.
    Bedoya, D., Matteson, C., Finegood, D.: Obesity Reviews 11(suppl. 1), 471 (2010)Google Scholar
  12. 12.
    Rush, W., Biltz, G., et al.: Tech. rep. (New England Complex Systems Institute) (2003)Google Scholar
  13. 13.
    Bahr, D., Browning, R., Wyatt, H., Hill, J.: Obesity 17(4), 723 (2009)CrossRefGoogle Scholar
  14. 14.
    Li, Z.: Introduction. In: Fuzzy Chaotic Systems, pp. 1–11. Springer (2006)Google Scholar
  15. 15.
    Zadeh, L.A.: Information and Control 8, 338 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Stylios, C.D., Groumpos, P.P.: Journal of Intelligent and Fuzzy Systems 8(2), 83 (2000)Google Scholar
  17. 17.
    Kosko, B.: International Journal of Man-Machine Studies 24, 65 (1986)zbMATHCrossRefGoogle Scholar
  18. 18.
    Stylios, C.D., Georgopoulos, V.C., et al.: Applied Soft Computing 8, 1243 (2008)CrossRefGoogle Scholar
  19. 19.
    Papageorgiou, E., Spyridonos, P., et al.: Applied Soft Computing 8(1), 820 (2008)CrossRefGoogle Scholar
  20. 20.
    Giabbanelli, P.J., Tornsney-Weir, T., Mago, V.K.: Applied Soft Systems (2012), under revisionsGoogle Scholar
  21. 21.
    Smith, K., Christakis, N.: Annual Review of Sociology 34, 405 (2008)CrossRefGoogle Scholar
  22. 22.
    Kolata, G.: The New York Times (2007)Google Scholar
  23. 23.
    Thompson, C.: The New York Times (2009)Google Scholar
  24. 24.
    Christakis, N.A., Fowler, J.H.: New England Journal of Medicine 357(4), 370 (2007)CrossRefGoogle Scholar
  25. 25.
    Lyons, R.: Statistics, Politics, and Policy 2(1) (2011)Google Scholar
  26. 26.
    Giabbanelli, P.J., Alimadad, A., et al.: Obesity Reviews 11(suppl. 1), 65 (2010)Google Scholar
  27. 27.
    Schnettler, S.: Social networks 21, 165 (2009)CrossRefGoogle Scholar
  28. 28.
    Comellas, F., Ozon, J., Peters, J.: Information Processing Letters 76(1-2), 83 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Giabbanelli, P.: Advances in Complex Systems 14(6), 853 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Watts, D., Strogatz, S.: Nature 393, 440 (1998)CrossRefGoogle Scholar
  31. 31.
    Food and Agriculture Organization, Report, joint FAO/WHO/UNU expert consultation (2004)Google Scholar
  32. 32.
    Booth, F., Chakravarthy, M.: Presidents Council on Physical Fitness and Sports Research Digest 3(16) (2002)Google Scholar
  33. 33.
    Axelrod, R.: Journal of Conflict Resolution 41(2), 203 (1997)CrossRefGoogle Scholar
  34. 34.
    Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Fuzzy Sets and Systems 153(3), 371 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Blane, D.: The Life Course, the Social Gradient, and Health. In: Social Determinants of Health. Oxford University Press (2006)Google Scholar
  36. 36.
    Wheaton, W., Cajka, J., Chasteen, B., et al.: RTI Press Publication MR-0010-0905 (2009)Google Scholar
  37. 37.
    Bowleg, L.: Sex Roles 59, 312 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philippe J. Giabbanelli
    • 1
    • 2
  1. 1.MoCSSy Program, Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) CentreSimon Fraser UniversityBurnabyCanada
  2. 2.Dept. of Biomedical PhysiologySimon Fraser UniversityBurnabyCanada

Personalised recommendations