An Empirical Study of the Relation between Community Structure and Transitivity

  • Keziban Orman
  • Vincent Labatut
  • Hocine Cherifi
Part of the Studies in Computational Intelligence book series (SCI, volume 424)


One of the most prominent properties in real-world networks is the presence of a community structure, i.e. dense and loosely interconnected groups of nodes called communities. In an attempt to better understand this concept, we study the relationship between the strength of the community structure and the network transitivity (or clustering coefficient). Although intuitively appealing, this analysis was not performed before. We adopt an approach based on random models to empirically study how one property varies depending on the other. It turns out the transitivity increases with the community structure strength, and is also affected by the distribution of the community sizes. Furthermore, increasing the transitivity also results in a stronger community structure. More surprisingly, if a very weak community structure causes almost zero transitivity, the opposite is not true and a network with a close to zero transitivity can still have a clearly defined community structure. Further analytical work is necessary to characterize the exact nature of the identified relationship.


Community Structure Degree Distribution Community Detection Transitive Network Community Detection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69 (2004)Google Scholar
  2. 2.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Pastor-Satorras, R., Rubi, M., Diaz-Guilera, A., Barabási, A.-L., Ravasz, E., Oltvai, Z.: Hierarchical Organization of Modularity in Complex Networks. In: Statistical Mechanics of Complex Networks, vol. 625, pp. 46–65. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, Z.H.: Bambi: Epidemic spreading in community networks. Europhysics Letters 72, 315–321 (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, G.-X., Qin, T.-G.: Impact of Community Structure on Network Efficiency and Communicability. In: 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 2, pp. 485–488 (2010)Google Scholar
  7. 7.
    Watts, D., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 409–410 (1998)CrossRefGoogle Scholar
  8. 8.
    Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Phys. Rev. E 64, 046132 (2001)CrossRefGoogle Scholar
  9. 9.
    Boguña, M., Pastor-Satorras, R., Diaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70, 056122 (2004)CrossRefGoogle Scholar
  10. 10.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys Rev E 78, 046110 (2008)CrossRefGoogle Scholar
  11. 11.
    Newman, M.E.J.: Random Graphs with Clustering. Phys. Rev. Lett. 103 (2009)Google Scholar
  12. 12.
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fortunato, S., Barthelemy, M.: Resolution limit in community detection. PNAS USA 104, 36–41 (2007)CrossRefGoogle Scholar
  14. 14.
    Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14, 95–116 (1949)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lancichinetti, A., Kivelä, M., Saramäki, J., Fortunato, S.: Characterizing the Community Structure of Complex Networks. PLoS ONE 5, e11976 (2010)CrossRefGoogle Scholar
  16. 16.
    Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 161–179 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Poncela, J., Gomez-Gardeñes, J., Florıa, L.M., Sanchez, A., Moreno, Y.: Complex Cooperative Networks from Evolutionary Preferential Attachment. PLoS ONE 3, e2449 (2008)CrossRefGoogle Scholar
  19. 19.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008)Google Scholar
  20. 20.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. PNAS 105, 1118 (2008)CrossRefGoogle Scholar
  21. 21.
    Orman, G.K., Labatut, V., Cherifi, H.: Qualitative Comparison of Community Detection Algorithms. Communications in Computer and Information Science 167, 265–279 (2011)CrossRefGoogle Scholar
  22. 22.
    da Fontoura Costa, L., Oliveira Jr., O.N., Travieso, G., Rodrigues, R.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., da Rocha, L.E.C.: Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications (2008), arXiv 0711.3199Google Scholar
  23. 23.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical Properties of Community Structure in Large Social and Information Networks. In: WWW. ACM, Beijing (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Keziban Orman
    • 1
    • 2
  • Vincent Labatut
    • 1
  • Hocine Cherifi
    • 2
  1. 1.Galatasaray UniversityIstanbulTurkey
  2. 2.University of BurgundyDijonFrance

Personalised recommendations