Aynaud, T., Guillaume, J.: Static community detection algorithms for evolving networks. In: Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 513–519. IEEE (2010)
Google Scholar
Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10,008 (2008)
Google Scholar
Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On Finding Graph Clusterings with Maximum Modularity. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Erdös, P., Rényi, A.: On random graphs. i. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)
MATH
Google Scholar
Gfeller, D., Chappelier, J., De Los Rios, P.: Finding instabilities in the community structure of complex networks. Physical Review E 72(5), 056, 135 (2005)
CrossRef
Google Scholar
Girvan, M., Newman, M.: Community structure in social and biological networks. In: Proceedings of the National Academy of Sciences, vol. 99(12), p. 7821 (2002)
Google Scholar
Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68(6), 065, 103 (2003)
CrossRef
Google Scholar
Guimera, R., Sales-Pardo, M., Amaral, L.: Modularity from fluctuations in random graphs and complex networks. Physical Review E 70(2), 025, 101 (2004)
CrossRef
Google Scholar
Karrer, B., Levina, E., Newman, M.: Robustness of community structure in networks. Physical Review E 77(4), 046, 119 (2008)
CrossRef
Google Scholar
Lambiotte, R.: Multi-scale modularity in complex networks. In: 2010 Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). IEEE (2010)
Google Scholar
Lancichinetti, A.: Community detection algorithms: a comparative analysis. Physical Review E 80(5), 056, 117 (2009)
CrossRef
Google Scholar
Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures & Algorithms 6(2-3), 161–180 (1995)
MathSciNet
MATH
CrossRef
Google Scholar
Newman, M.: The structure of scientific collaboration networks. In: Proceedings of the National Academy of Sciences, vol. 98(2), p. 404 (2001)
Google Scholar
Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Physical review E 69(2), 026, 113 (2004)
CrossRef
Google Scholar
Pfitzner, D., Leibbrandt, R., Powers, D.: Characterization and evaluation of similarity measures for pairs of clusterings. Knowledge and Information Systems 19(3), 361–394 (2009)
CrossRef
Google Scholar
Qinna, W., Fleury, E.: Detecting overlapping communities in graphs. In: European Conference on Complex Systems (ECCS 2009), Warwick Royaume-Uni. (2009),
http://hal.inria.fr/inria-00398817/en/
Rosvall, M., Bergstrom, C.: Mapping change in large networks. PloS one 5(1), e8694 (2010)
CrossRef
Google Scholar
Salwinski, L., Miller, C., Smith, A., Pettit, F., Bowie, J., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Research 32(suppl. 1), D449–D451 (2004)
CrossRef
Google Scholar
Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3, 583–617 (2003)
MathSciNet
MATH
Google Scholar
Vinh, N., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080. ACM (2009)
Google Scholar
Zachary, W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 452–473 (1977)
Google Scholar