COV4SWS.KOM: Information Quality-Aware Matchmaking for Semantic Services

  • Stefan Schulte
  • Ulrich Lampe
  • Matthias Klusch
  • Ralf Steinmetz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7295)


The discovery of functionally matching services – often referred to as matchmaking – is one of the essential requirements for realizing the vision of the Internet of Services. In practice, however, the process is complicated by the varying quality of syntactic and semantic descriptions of service components. In this work, we propose COV4SWS.KOM, a semantic matchmaker that addresses this challenge through the automatic adaptation to the description quality on different levels of the service structure. Our approach performs very good with respect to common Information Retrieval metrics, achieving top placements in the renowned Semantic Service Selection Contest, and thus marks an important contribution to the discovery of services in a realistic application context.


Ordinary Little Square Service Request Service Discovery Semantic Concept Service Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baader, F., Nutt, W.: Basic Description Logics. In: The Description Logic Handbook: Theory, Implementation and Applications, ch. 2, pp. 47–100. Cambridge University Press (2003)Google Scholar
  2. 2.
    Bellur, U., Kulkarni, R.: Improved Matchmaking Algorithm for Semantic Web Services Based on Bipartite Graph Matching. In: 2007 IEEE International Conference on Web Services, pp. 86–93 (2007)Google Scholar
  3. 3.
    Booth, D., Liu, C.K. (eds.): Web Service Description Language (WSDL) Version 2.0 Part 0: Primer. W3C Recommendation (June 2007)Google Scholar
  4. 4.
    Bourgeois, F., Lassalle, J.C.: An extension of the Munkres algorithm for the assignment problem to rectangular matrices. Communications of the ACM 14(12), 802–804 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Computational Linguistics 32(1), 13–47 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Farrell, J., Lausen, H. (eds.): Semantic Annotations for WSDL and XML Schema. W3C Recommendation (August 2007)Google Scholar
  7. 7.
    Gomadam, K., Verma, K., Sheth, A.P., Li, K.: Keywords, Port Types and Semantics: A Journey in the Land of Web Service Discovery. In: SWS, Processes and Applications, ch. 4, pp. 89–105. Springer (2006)Google Scholar
  8. 8.
    Kiefer, C., Bernstein, A.: The Creation and Evaluation of iSPARQL Strategies for Matchmaking. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 463–477. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Klusch, M.: Semantic Web Service Coordination. In: Schumacher, M., Helin, H., Schuldt, H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web, ch. 4, pp. 59–104. Birkhäuser Verlag (2008)Google Scholar
  10. 10.
    Klusch, M., Fries, B., Sycara, K.P.: OWLS-MX: A hybrid Semantic Web service matchmaker for OWL-S services. Journal of Web Semantics 7(2), 121–133 (2009)CrossRefGoogle Scholar
  11. 11.
    Klusch, M., Kapahnke, P.: iSeM: Approximated Reasoning for Adaptive Hybrid Selection of Semantic Services. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 30–44. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Klusch, M., Kapahnke, P., Zinnikus, I.: Hybrid Adaptive Web Service Selection with SAWSDL-MX and WSDL-Analyzer. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 550–564. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Klusch, M., Küster, U., König-Ries, B., Leger, A., Martin, D., Paolucci, M., Bernstein, A.: 4th International Semantic Service Selection Contest – Retrieval Performance Evaluation of Matchmakers for Semantic Web Services, S3 Contest (2010)Google Scholar
  14. 14.
    Lampe, U., Schulte, S., Siebenhaar, M., Schuller, D., Steinmetz, R.: Adaptive Matchmaking for RESTful Services based on hRESTS and MicroWSMO. In: Workshop on Enhanced Web Service Technologies (WEWST 2010), pp. 10–17 (2010)Google Scholar
  15. 15.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Fifteenth International Conference on Machine Learning, pp. 296–304 (1998)Google Scholar
  16. 16.
    Miller, G.A.: WordNet: a lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  17. 17.
    Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)Google Scholar
  18. 18.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Plebani, P., Pernici, B.: URBE: Web Service Retrieval Based on Similarity Evaluation. IEEE Trans. on Knowledge and Data Engineering 21(11), 1629–1642 (2009)CrossRefGoogle Scholar
  20. 20.
    Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. Artificial Intelligence Research 11, 95–130 (1999)zbMATHGoogle Scholar
  21. 21.
    Sakai, T., Kando, N.: On Information Retrieval Metrics designed for Evaluation with Incomplete Relevance Assessments. Information Retrieval 11(5), 447–470 (2008)CrossRefGoogle Scholar
  22. 22.
    Schulte, S., Lampe, U., Eckert, J., Steinmetz, R.: LOG4SWS.KOM: Self-Adapting Semantic Web Service Discovery for SAWSDL. In: 2010 IEEE 6th World Congress on Services, pp. 511–518 (2010)Google Scholar
  23. 23.
    Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-Lite Annotations for Web Services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Wang, R.Y., Strong, D.M.: Beyond Accuracy: What Data Quality Means to Data Consumers. Management Information Systems 12(4), 5–33 (1996)zbMATHGoogle Scholar
  25. 25.
    Wooldridge, J.M.: Introductory Econometrics: A Modern Approach, 2nd edn. Thomson South-Western (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Schulte
    • 1
  • Ulrich Lampe
    • 2
  • Matthias Klusch
    • 3
  • Ralf Steinmetz
    • 2
  1. 1.Distributed Systems GroupVienna University of TechnologyAustria
  2. 2.Multimedia Communications LabTechnische Universität DarmstadtGermany
  3. 3.German Research Center for Artificial IntelligenceSaarbrückenGermany

Personalised recommendations