Modelling Structured Domains Using Description Graphs and Logic Programming

  • Despoina Magka
  • Boris Motik
  • Ian Horrocks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7295)


Although OWL 2 is widely used to describe complex objects such as chemical molecules, it cannot represent ‘structural’ features of chemical entities (e.g., having a ring). A combination of rules and description graphs (DGs) has been proposed as a possible solution, but it still exhibits several drawbacks. In this paper we present a radically different approach that we call Description Graph Logic Programs. Syntactically, our approach combines DGs, rules, and OWL 2 RL axioms, but its semantics is defined via a translation into logic programs under stable model semantics. The result is an expressive OWL 2 RL-compatible formalism that is well suited for modelling objects with complex structure.


Logic Program Logic Programming Description Logic Stable Model Description Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. CUP (2007)Google Scholar
  2. 2.
    Baget, J.F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables: Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)zbMATHCrossRefGoogle Scholar
  3. 3.
    Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. Journal of Logic Programming 19, 73–148 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  5. 5.
    Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical knowledge representation and query languages for new applications. In: LICS (2010)Google Scholar
  6. 6.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query Answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2: The next step for OWL. J. Web Sem. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  8. 8.
    Graves, H.: Representing Product Designs Using a Description Graph Extension to OWL 2. In: Proc. of the 5th OWLED Workshop (2009)Google Scholar
  9. 9.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logic. In: WWW (2003)Google Scholar
  10. 10.
    Hastings, J., Dumontier, M., Hull, D., Horridge, M., Steinbeck, C., Sattler, U., Stevens, R., Hörne, T., Britz, K.: Representing Chemicals using OWL, Description Graphs and Rules. In: OWLED (2010)Google Scholar
  11. 11.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A semantic web rule language combining OWL and RuleML. W3C Member Submission (May 21, 2004),
  12. 12.
    Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable Rules for OWL 2. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Krötzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for owl: nominal schemas for integrating rules and ontologies. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) WWW, pp. 645–654. ACM (2011)Google Scholar
  14. 14.
    Levy, A.Y., Rousset, M.C.: Combining Horn Rules and Description Logics in CARIN. Artificial Intelligence 104(1-2), 165–209 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete domains. J. of Artificial Intelligence Research 23, 667–726 (2004)MathSciNetGoogle Scholar
  16. 16.
    Marnette, B.: Generalized Schema-Mappings: from Termination to Tractability. In: PODS (2009)Google Scholar
  17. 17.
    de Matos, P., Alcántara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., Spiteri, I., Turner, S., Steinbeck, C.: Chemical Entities of Biological Interest: an update. Nucleic Acids Research 38(Database-Issue), 249–254 (2010)CrossRefGoogle Scholar
  18. 18.
    McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell. (1980)Google Scholar
  19. 19.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language: Profiles, W3C Recommendation (October 27, 2009)Google Scholar
  20. 20.
    Motik, B., Grau, B.C., Horrocks, I., Sattler, U.: Representing Ontologies Using Description Logics, Description Graphs, and Rules. Artif. Int. 173, 1275–1309 (2009)zbMATHCrossRefGoogle Scholar
  21. 21.
    Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. J. Web Sem. 3(1), 41–60 (2005)CrossRefGoogle Scholar
  22. 22.
    Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in the GALEN project. In: SCAMC 1993, pp. 414–418 (1993)Google Scholar
  23. 23.
    Vardi, M.Y.: Why is modal logic so robustly decidable? DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 149–184 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Despoina Magka
    • 1
  • Boris Motik
    • 1
  • Ian Horrocks
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations