Advertisement

Testing the Variability of Interval Data: An Application to Tidal Fluctuation

  • Ana Belén Ramos-Guajardo
  • Gil González-Rodríguez
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)

Abstract

A methodology for analyzing the variability of the tidal fluctuation in a specific area is proposed in this work. The idea is to consider intervals determined by the minimum and maximum height reached by the tides in a day. Thus, the theoretical aim is to develop hypothesis tests about the variance of one or more interval-valued random elements (i.e., random intervals). Some simulations showing the empirical behavior and consistency of the proposed tests are carried out by considering different models. Finally, the procedure is applied to a real-life study concerning the fluctuation of tides in the port of Gijón (Asturias).

Keywords

Simple Random Sample Interval Data Random Interval Bootstrap Technique Bootstrap Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. Annals of Probability 5, 879–882 (1975)CrossRefGoogle Scholar
  2. 2.
    Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baker, A.C.: Tidal power. Peter Peregrinus Ltd, London (1991)CrossRefGoogle Scholar
  4. 4.
    Beard, A.G., Mitchell, N.J., Williams, P.J.S., Kunitake, M.: Non-linear interactions between tides and planetary waves resulting in periodic tidal variability. Journal of Atmospheric and Solar-Terrestrial Physics 61(5), 363–376 (1999)CrossRefGoogle Scholar
  5. 5.
    Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy numbers. Mathware & Soft Computing 2, 71–84 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Branzei, R., Alparsan Gok, S.Z.: Bankuptcy problems with interval uncertainty. Economics Bulletin 3(56), 1–10 (2008)Google Scholar
  7. 7.
    Bryden, I.G., Couch, S.J.: ME1-marine energy extraction: tidal resource analysis. Renewable Energy 31(2), 133–139 (2006)CrossRefGoogle Scholar
  8. 8.
    Erskine, A.D.: The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 29(4), 556–562 (2005)CrossRefGoogle Scholar
  9. 9.
    Garrett, C., Cummins, P.: Generating Power from Tidal Currents. Journal of Waterway, Port, Coastal, and Ocean Engineering 130(3), 114–118 (2004)CrossRefGoogle Scholar
  10. 10.
    Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10, 215–310 (1948)Google Scholar
  11. 11.
    Irpino, A., Verde, R.: Dynamic clustering of interval data using a Wasserstein-based distance. Recognition Letters 29(11), 1648–1658 (2008)CrossRefGoogle Scholar
  12. 12.
    Gil, M.A., Lubiano, M.A., Montenegro, M., López-García, M.T.: Least squares fitting of an affine function and strength of association for interval-valued data. Metrika 56, 97–111 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gil, M.A., Montenegro, M., González-Rodríguez, G., Colubi, A., Casals, M.R.: Bootstrap approach to the multi-sample test of means with imprecise data. Comput. Statist. Data Anal. 51, 148–162 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    González-Rodríguez, G., Montenegro, M., Colubi, A., Gil, M.A.: Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data. Fuzzy Sets and Systems 157, 2608–2613 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    González-Rodríguez, G., Blanco, A., Corral, N., Colubi, A.: Least squares estimation of linear regression models for convex compact random sets. Advances in Data Analysis and Classification 1, 67–81 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Körner, R.: Linear models with random fuzzy variables. PhD Thesis, Freiberg University of Mining and Technology (1997)Google Scholar
  17. 17.
    Kruse, R., Meyer, K.D.: Statistics with Vague Data. D. Reidel Publishing Company, Dordrecht (1987)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lubiano, M.A., Alonso, C., Gil, M.A.: Statistical inferences on the S-mean squared dispersion of a fuzzy random variable. In: Proc. Joint EUROFUSE-SIC 1999, Budapest, pp. 532–537 (1999)Google Scholar
  19. 19.
    Montenegro, M., Colubi, A., Casals, M.R., Gil, M.A.: Asymptotic and Bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59, 31–49 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Näther, W.: On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data. Metrika 51, 201–221 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Nio, S.D., Yang, C.S.: Sea-level fluctuations and the geometric variability of tide-dominated sandbodies. Sedimentary Geology 70(2-4), 161–172, 179–193 (1991)Google Scholar
  22. 22.
    Pipper, C.B., Ritz, C.: Checking the grouped data version of the Cox Model for interval-grouped survival data. Scandinavian Journal of Statistics 34, 405–418 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ramos-Guajardo, A.B., Colubi, A., González-Rodríguez, G., Gil, M.A.: One-sample tests for a generalized Fréchet variance of a fuzzy random variable. Metrika 71(2), 185–202 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Information Sciences 179, 3964–3972 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Belén Ramos-Guajardo
    • 1
  • Gil González-Rodríguez
    • 1
  1. 1.Dpto. de Estadística, I.O. y D.M.Universidad de OviedoOviedoSpain

Personalised recommendations