Skip to main content

Stochastic Convergence Analysis of Metaheuristic Optimisation Techniques

  • Chapter
  • 1527 Accesses

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 285)

Abstract

Commonly used metaheuristic optimisation techniques imbed stochastic elements into the selection of the initial population or/and into the solution-search strategy. Introducing randomness is often a means of escaping from local optima when searching for the global solution. However, depending on the ruggedness of the optimisation landscape and the complexity of the problem at hand, this practice leads to a dispersion of the reported solutions. Instead of relying on the best solution found in a set of runs, as is typical in many optimisation exercises, it is essential to get an indication of the expected dispersion of results by estimating the probability of converging to a “good” solution after a certain number of generations. We apply a range of statistical techniques for estimating the success probability and the convergence rate of popular evolutionary optimisation heuristics in the context of portfolio management. We show how this information can be utilised by a researcher to obtain a deeper understanding of algorithmic behaviour and to evaluate the relative performance of competitive optimisation schemes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-30278-7_27
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-30278-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrero, D.F., Castaño, B., R-Moreno, M.D., Camacho, D.: Statistical Distribution of Generation-to-Success in GP: Application to Model Accumulated Success Probability. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 154–165. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  2. Chernick, M.R.: Bootstrap Methods: A practitioner’s guide. Wiley Series in Probability and Statistics (1999)

    Google Scholar 

  3. Dorigo, M., Stützle, M.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  4. Dreo, J., Petrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC 2005 Special Session on Real Parameter Optimization. Journal of Heuristics 15, 617–644 (2009)

    MATH  CrossRef  Google Scholar 

  6. Gilli, M., Winker, P.: Heuristic Optimization Methods in Econometrics. In: Belsley, D., Kontoghiorghes, E. (eds.) Handbook of Computational Econometrics, pp. 81–119. J. Wiley & Sons, Chichester (2009)

    CrossRef  Google Scholar 

  7. Holland, J.H.: Genetic Algorithms. Scientific American 267, 66–72 (1992)

    CrossRef  Google Scholar 

  8. Keber, C., Maringer, D.: On Genes, Insects and Crystals: Determing Marginal Diversification Effects with Nature Based Methods. In: Computing in Economics and Finance, p. 152. Society for Computational Economics (2001)

    Google Scholar 

  9. Maringer, D.: Small is Beautiful: Diversification with a Limited Number of Assets. In: CCFEA Working Paper Series (WP005 2006). University of Essex (2006)

    Google Scholar 

  10. Moré, J.J.: The Levenberg-Marquardt algorithm: Implementation and theory. Lecture Notes in Mathematics, vol. 630, pp. 104–116. Springer, Berlin (1978)

    Google Scholar 

  11. Sortino, A.F., Price, N.L.: Performance Measurement in a Downside Risk Framework. The Journal of Investing 64, 59–64 (1994)

    CrossRef  Google Scholar 

  12. Talbi, E.-G.: Metaheuristics: From Design to Implementation. J. Wiley & Sons, Chichester (2009)

    MATH  Google Scholar 

  13. Thomaidis, N.S.: Active Portfolio Management from a Fuzzy Multi-objective Programming Perspective. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 222–231. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  14. Thomaidis, N.S.: A Soft Computing Approach to Enhanced Indexation. In: Brabazon, A., O’Neill, M., Maringer, D. (eds.) Natural Computing in Computational Finance. SCI, vol. 380, pp. 61–77. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  15. Vassiliadis, V., Thomaidis, N., Dounias, G.: Active Portfolio Management under a Downside Risk Framework: Comparison of a Hybrid Nature – Inspired Scheme. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 702–712. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  16. Vassiliadis, V., Thomaidis, N., Dounias, G.: On the Performance and Convergence Properties of Hybrid Intelligent Schemes: Application on Portfolio Optimization Domain. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 131–140. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  17. Weise, T.: Global Optimization Algorithms: Theory and Application (2009), E-book available from http://www.it-weise.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos S. Thomaidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Thomaidis, N.S., Vassiliadis, V. (2013). Stochastic Convergence Analysis of Metaheuristic Optimisation Techniques. In: Borgelt, C., Gil, M., Sousa, J., Verleysen, M. (eds) Towards Advanced Data Analysis by Combining Soft Computing and Statistics. Studies in Fuzziness and Soft Computing, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30278-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30278-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30277-0

  • Online ISBN: 978-3-642-30278-7

  • eBook Packages: EngineeringEngineering (R0)