Advertisement

Fuzzy Clustering based on Coverings

  • Didier Dubois
  • Daniel Sánchez
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)

Abstract

In this paper we propose fuzzy coverings as a way to perform fuzzy clustering of data on the basis of a fuzzy proximity relation. Remarkably, the proposal does not require any kind of fuzzy transitivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aslam, J., Pelekhov, K., Rus, D.: Static and dynamic information organization with star clusters. In: Proc. 7th Int. Conf. on Information and Knowledge Management (1998)Google Scholar
  2. 2.
    Bezdek, J.C., Harris, J.D.: Fuzzy partitions and relations: An axiomatic basis for clustering. Fuzzy Sets and Systems 1(2), 111–127 (1978)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks by H*-graph. In: Proc. 2010 Int. Conf. on Management of Data, SIGMOD 2010 (2010)Google Scholar
  4. 4.
    Couso, I., Dubois, D.: Rough sets, coverings and incomplete information. Fundamenta Informaticae 108, 223–247 (2011)MathSciNetMATHGoogle Scholar
  5. 5.
    Dubois, D., Prade, H. (eds.): Fundamentals of Fuzzy Sets. Kluwer, Amsterdam (2000)MATHGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing 12, 165–175 (2008)MATHCrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Bridging gaps between several frameworks for the idea of granulation. In: Symposium on Foundations of Computational Intelligence (FOCI 2011), pp. 59–65 (2011)Google Scholar
  8. 8.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal of the ACM 41, 960–981 (1994)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Mohseni-Zadeh, S., Brézellec, P., Risler, J.L.: Cluster-c, an algorithm for the large-scale clustering of protein sequences based on the extraction of maximal cliques. Computational Biology and Chemistry 28, 211–218 (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Sánchez, D., Delgado, M., Vila, M.A., Chamorro-Martínez, J.: On a non-nested level-based representation of fuzziness. Fuzzy Sets and Systems 192, 159–175 (2012)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Tomita, E., Tanaka, A., Takahashia, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science 363, 28–42 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Trillas, E., Valverde, L.: An inquiry into indistinguishability operators. In: Skala, H.J., Termini, S., Trillas, E. (eds.) Aspects of Vagueness, pp. 231–256. D. Reidel, Dordrecht (1984)CrossRefGoogle Scholar
  13. 13.
    Valverde, L.: On the structure of f-indistinguishability operators. Fuzzy Sets and Systems 17, 313–328 (1985)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wu, B., Yang, S., Zhao, H., Wang, B.: A distributed algorithm to enumerate all maximal cliques in MAPREDUCE. In: Proc. 4th Int. Conf. on Frontier of Computer Science and Technology, FCST 2009 (2009)Google Scholar
  15. 15.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3(2), 177–200 (1971)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IRIT, CNRS & Université de ToulouseToulouseFrance
  2. 2.European Centre for Soft ComputingMieresSpain
  3. 3.Dept. Computer Science and AIUniversidad de GranadaGranadaSpain

Personalised recommendations