Fuzzy Clustering based on Coverings

  • Didier DuboisEmail author
  • Daniel Sánchez
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)


In this paper we propose fuzzy coverings as a way to perform fuzzy clustering of data on the basis of a fuzzy proximity relation. Remarkably, the proposal does not require any kind of fuzzy transitivity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aslam, J., Pelekhov, K., Rus, D.: Static and dynamic information organization with star clusters. In: Proc. 7th Int. Conf. on Information and Knowledge Management (1998)Google Scholar
  2. 2.
    Bezdek, J.C., Harris, J.D.: Fuzzy partitions and relations: An axiomatic basis for clustering. Fuzzy Sets and Systems 1(2), 111–127 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks by H*-graph. In: Proc. 2010 Int. Conf. on Management of Data, SIGMOD 2010 (2010)Google Scholar
  4. 4.
    Couso, I., Dubois, D.: Rough sets, coverings and incomplete information. Fundamenta Informaticae 108, 223–247 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dubois, D., Prade, H. (eds.): Fundamentals of Fuzzy Sets. Kluwer, Amsterdam (2000)zbMATHGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing 12, 165–175 (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Bridging gaps between several frameworks for the idea of granulation. In: Symposium on Foundations of Computational Intelligence (FOCI 2011), pp. 59–65 (2011)Google Scholar
  8. 8.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal of the ACM 41, 960–981 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Mohseni-Zadeh, S., Brézellec, P., Risler, J.L.: Cluster-c, an algorithm for the large-scale clustering of protein sequences based on the extraction of maximal cliques. Computational Biology and Chemistry 28, 211–218 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Sánchez, D., Delgado, M., Vila, M.A., Chamorro-Martínez, J.: On a non-nested level-based representation of fuzziness. Fuzzy Sets and Systems 192, 159–175 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Tomita, E., Tanaka, A., Takahashia, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science 363, 28–42 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Trillas, E., Valverde, L.: An inquiry into indistinguishability operators. In: Skala, H.J., Termini, S., Trillas, E. (eds.) Aspects of Vagueness, pp. 231–256. D. Reidel, Dordrecht (1984)CrossRefGoogle Scholar
  13. 13.
    Valverde, L.: On the structure of f-indistinguishability operators. Fuzzy Sets and Systems 17, 313–328 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wu, B., Yang, S., Zhao, H., Wang, B.: A distributed algorithm to enumerate all maximal cliques in MAPREDUCE. In: Proc. 4th Int. Conf. on Frontier of Computer Science and Technology, FCST 2009 (2009)Google Scholar
  15. 15.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3(2), 177–200 (1971)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IRIT, CNRS & Université de ToulouseToulouseFrance
  2. 2.European Centre for Soft ComputingMieresSpain
  3. 3.Dept. Computer Science and AIUniversidad de GranadaGranadaSpain

Personalised recommendations