Derivation of Linguistic Summaries is Inherently Difficult: Can Association Rule Mining Help?

  • Janusz Kacprzyk
  • Sławomir Zadrożny
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)


We present first the essence of fuzzy linguistic summaries, indicate their relation to fuzzy queries with linguistic quantifiers, and show a taxonomy of protoforms of linguistic summaries indicating that a general protoform, which corresponds to some type of an IF-THEN rule, parallels the structure and form of an association rule. We show that the use of our fuzzy querying interface makes it possible to operationalize the process of definition, updating and processing of fuzzy terms in linguistic data summaries (fuzzy values, fuzzy relations, fuzzy linguistic quantifiers, etc.) and their corresponding fuzzy association rules of a special type. We develop for them a mining algorithm based on AprioriTID. This is clearly a step towards an effective and efficient method for the generation of linguistic data summaries which is badly needed for their proliferation in practice.


Association Rule Linguistic Term Frequent Itemsets Association Rule Mining Truth Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. 20th Int. Conf. on Very Large Databases (VLDB 1994), Santiago de Chile, pp. 487–499. Morgan Kaufmann, San Mateo (1994)Google Scholar
  2. 2.
    Baczko, T., Kacprzyk, J., Zadrożny, S.: Towards Knowledge Driven Individual Integrated Indicators of Innovativeness. In: Jozefczyk, J., Orski, D. (eds.) Knowledge-Based Intelligent System Advancements: Systemic and Cybernetic Approaches, pp. 129–140. IGI Global, Hershey (2011)Google Scholar
  3. 3.
    Borgelt, C., Kruse, R.: Induction of Association Rules: Apriori Implementation. In: Proc. 15th Conf. on Comp. Statistics (Compstat 2002), Berlin, Germany, pp. 395–400. Physica Verlag, Heidelberg (2002)Google Scholar
  4. 4.
    Bosc, P., Dubois, D., Pivert, O., Prade, H., de Calmes, M.: Fuzzy Summarization of Data Using Fuzzy Cardinalities. In: Proc. IPMU 2002, Annecy, France, pp. 1553–1559 (2002)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: Gradual Rules in Approximate Reasoning. Information Sciences 61, 103–122 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    George, R., Srikanth, R.: Data Summarization Using Genetic Algorithms and Fuzzy Logic. In: Herrera, F., Verdegay, J.L. (eds.) Genetic Algorithms and Soft Computing, pp. 599–611. Physica-Verlag, Heidelberg (1996)Google Scholar
  7. 7.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic Summarization of Time Series Using a Fuzzy Quantifier Driven Aggregation. Fuzzy Sets and Systems 159, 1485–1499 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kacprzyk, J., Yager, R.R.: Linguistic Summaries of Data Using Fuzzy Logic. Int. Journal of General Systems 30, 133–154 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kacprzyk, J., Yager, R.R., Zadrożny, S.: A Fuzzy Logic Based Approach to Linguistic Summaries of Databases. Int. Journal of Applied Mathematics and Computer Science 10, 813–834 (2000)zbMATHGoogle Scholar
  10. 10.
    Kacprzyk, J., Zadrożny, S.: Fuzzy queries in Microsoft Access v.2. In: Proc. FUZZ-IEEE/IFES 1995, Workshop on Fuzzy Database Systems and Information Retrieval, Yokohama, Japan, pp. 61–66 (1995)Google Scholar
  11. 11.
    Kacprzyk, J., Zadrożny, S.: FQUERY for Access: Fuzzy Querying for a Windows-based DBMS. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems, pp. 415–433. Physica-Verlag, Heidelberg (1995)Google Scholar
  12. 12.
    Kacprzyk, J., Zadrożny, S.: On Combining Intelligent Querying and Data Mining Using Fuzzy Logic Concepts. In: Bordogna, G., Pasi, G. (eds.) Recent Research Issues on the Management of Fuzziness in Databases, pp. 67–81. Physica-Verlag, Heidelberg (2000)Google Scholar
  13. 13.
    Kacprzyk, J., Zadrożny, S.: Data Mining via Linguistic Summaries of Databases: An Interactive Approach. In: Ding, L. (ed.) A New Paradigm of Knowledge Engineering by Soft Computing, pp. 325–345. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  14. 14.
    Kacprzyk, J., Zadrożny, S.: Fuzzy Linguistic Summaries via Association Rules. In: Kandel, A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence, pp. 115–139. Physica Verlag, Heidelberg (2001)Google Scholar
  15. 15.
    Kacprzyk, J., Zadrożny, S.: CWW in Intelligent Database Querying: Standalone and Internet-based Applications. Information Sciences 34, 71–109 (2001)CrossRefGoogle Scholar
  16. 16.
    Kacprzyk, J., Zadrożny, S.: Linguistic Summarization of Data Sets Using Association Rules. In: Proc. FUZZ-IEEE 2003, St. Louis, USA, pp. 702–707 (2003)Google Scholar
  17. 17.
    Kacprzyk, J., Zadrożny, S.: Linguistic Database Summaries and Their Protoforms: Towards Natural Language based Knowledge Discovery Tools. Information Sciences 173(4), 281–304 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kacprzyk, J., Zadrożny, S., Ziółkowski, A.: FQUERY III+: A ’Human Consistent‘ Database Querying System based on Fuzzy Logic with Linguistic Quantifiers. Information Systems 6, 443–453 (1989)CrossRefGoogle Scholar
  19. 19.
    Kacprzyk, J., Ziółkowski, A.: Database Queries with Fuzzy Linguistic Quantifiers. IEEE Transactions on Systems, Man and Cybernetics 16, 474–479 (1986)CrossRefGoogle Scholar
  20. 20.
    Kryszkiewicz, M.: Concise Representation of Frequent Patterns based on Disjunction-free Generators. In: Proc. of ICDM 2001, San Jose, USA, pp. 305–312 (2001)Google Scholar
  21. 21.
    Srikant, R., Agrawal, R.: Mining Quantitative Association Rules in Large Relational Tables. In: Proc. of ACM-SIGMOD Conf. on Manag. of Data, Montreal, Canada (1996)Google Scholar
  22. 22.
    Raschia, G., Mouaddib, N.: SAINTETIQ: A Fuzzy Set based Approach to Database Summarization. Fuzzy Sets and Systems 129, 137–162 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Rasmussen, D., Yager, R.R.: Finding Fuzzy and Gradual Functional Dependencies with summarySQL. Fuzzy Sets and Systems 106, 131–142 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Yager, R.R.: A New Approach to the Summarization of Data. Information Sciences 28, 69–86 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Yager, R.R.: On Ordered Weighted Averaging Operators in Multicriteria Decision Making. IEEE Trans. on Systems, Man and Cybern., 183–190 (1988)Google Scholar
  26. 26.
    Yager, R.R.: Database Discovery using Fuzzy Sets. Int. Journal of Intelligent Systems 11, 691–712 (1996)CrossRefGoogle Scholar
  27. 27.
    Yager, R.R., Kacprzyk, J.: The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer, Boston (1997)CrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A.: A Computational Approach to Fuzzy Quantifiers in Natural Languages. Computers and Maths with Appls. 9, 149–184 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zadeh, L.A.: A Prototype-centered Approach to Adding Deduction Capabilities to Search Engines — The Concept of a Protoform. BISC Seminar. Univ. of California, Berkeley (2002)Google Scholar
  30. 30.
    Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Information/Intelligent Systems, 1. Foundations. 2. Applications. Physica-Verlag, Heidelberg (1999)Google Scholar
  31. 31.
    Zadrożny, S., De Tré, G., De Caluwe, R., Kacprzyk, J.: An Overview of Fuzzy Approaches to Flexible Database Querying. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 34–53. Idea Group Inc. (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Technical University of RadomRadomPoland

Personalised recommendations