Linear Regression Analysis for Interval-valued Data Based on Set Arithmetic: A Review

  • Angela Blanco-Fernández
  • Ana Colubi
  • Gil González-Rodríguez
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)


When working with real-valued data regression analysis allows to model and forecast the values of a random variable in terms of the values of either another one or several other random variables defined on the same probability space. When data are not real-valued, regression techniques should be extended and adapted to model simply relationships in an effective way. Different kinds of imprecision may appear in experimental data: uncertainty in the quantification of the data, subjective measurements, perceptions, to name but a few. Compact intervals can be effectively used to represent these imprecise data. Set- and fuzzy-valued elements are also employed for representing different kinds of imprecise data. In this paper several linear regression estimation techniques for interval-valued data are revised. Both the practical applicability and the empirical behaviour of the estimation methods is studied by comparing the performance of the techniques under different population conditions.


Regression Problem Interval Arithmetic Random Interval Fuzzy Random Variable Simple Linear Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy numbers. Mathware Soft. Comp. 2, 71–84 (1995)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Billard, L., Diday, E.: From the Statistics of data to the Statistics of knowledge: Symbolic Data Analysis. J. Amer. Stat. Assoc. 98, 470–487 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blanco-Fernández, A., Corral, N., González-Rodríguez, G.: Estimation of a flexible simple linear model for interval data based on set arithmetic. Comp. Stat. Data Anal. 55(9), 2568–2578 (2011)CrossRefGoogle Scholar
  4. 4.
    Diamond, P.: Least squares fitting of compact set-valued data. J. Math. Anal. Appl. 147, 531–544 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gil, M.A., Lubiano, A., Montenegro, M., López-García, M.T.: Least squares fitting of an affine function and strength of association for interval-valued data. Metrika 56, 97–111 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    González-Rodríguez, G., Colubi, A., Coppi, R., Giordani, P.: On the estimation of linear models with interval-valued data. In: Proc. 17th IASC. Physica-Verlag, Heidelberg (2006)Google Scholar
  7. 7.
    González-Rodríguez, G., Blanco, A., Corral, N., Colubi, A.: Least squares estimation of linear regression models for convex compact random sets. Adv. D. Anal. Class. 1, 67–81 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    González-Rodríguez, G., Blanco, A., Colubi, A., Lubiano, M.A.: Estimation of a simple linear regression model for fuzzy random variables. Fuzzy Sets Syst. 160(3), 357–370 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Körner, R., Näther, W.: On the variance of random fuzzy variables. In: Stat. Mod. Anal. Manag. Fuzzy D., pp. 22–39. Physica-Verlag, Heidelberg (2002)Google Scholar
  10. 10.
    Huber, C., Solev, V., Vonta, F.: Interval censored and truncated data: Rate of convergence of NPMLE of the density. J. Stat. Plann. Infer. 139, 1734–1749 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jahanshahloo, G.R., Hosseinzadeh, L.F., Rostamy, M.M.: A generalized model for data envelopment analysis with interval data. Appl. Math. Model 33, 3237–3244 (2008)CrossRefGoogle Scholar
  12. 12.
    Lima Neto, E.A., de Carvalho, F.d.A.T.: Constrained linear regression models for symbolic interval-valued variables. Comp. Stat. Data Anal. 54, 333–347 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Inform. Sci. 179(23), 3964–3972 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wang, G., Zhang, Y.: The theory of fuzzy stochastic processes. Fuzzy Sets Syst. 51, 161–178 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Angela Blanco-Fernández
    • 1
  • Ana Colubi
    • 1
  • Gil González-Rodríguez
    • 1
  1. 1.Department of Statistics and Operational ResearchUniversity of OviedoOviedoSpain

Personalised recommendations