Advanced Analysis of Dynamic Graphs in Social and Neural Networks

  • Pascal Held
  • Christian Moewes
  • Christian Braune
  • Rudolf Kruse
  • Bernhard A. Sabel
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)


Dynamic graphs are ubiquitous in real world applications. They can be found, e.g. in biology, neuroscience, computer science, medicine, social networks, the World Wide Web. There is a great necessity and interest in analyzing these dynamic graphs efficiently. Typically, analysis methods from classical data mining and network theory have been studied separately in different fields of research. Dealing with complex networks in real world applications, there is a need to perform interdisciplinary research by combining techniques of different fields. In this paper, we analyze dynamic graphs from two different applications, i.e. social science and neuroscience. We exploit the edge weights in both types of networks to answer distinct questions in the respective fields of science. First, for the representation of edge weights in a social network graph we propose a method to efficiently represent the strength of a relation between two entities based on events involving both entities. Second, we correlate graph measures of electroencephalographic activity networks with clinical variables to find good predictors for patients with visual field damages.


Mean Square Error Functional Connectivity Edge Weight Granger Causality Dynamic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dynamic graph algorithms. J. Exp. Algoritm. 2 (1997)Google Scholar
  2. 2.
    Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F.: Guide to Intelligent Data Analysis. In: How to Intelligently Make Sense of Real Data. Springer, London (2010)Google Scholar
  3. 3.
    Butterworth, S.: On the theory of filter amplifiers. Exp. Wirel. & Wirel. Eng. 7, 536–541 (1930)Google Scholar
  4. 4.
    Butts, C.T.: Revisiting the foundations of network analysis. Science 325(5939), 414–416 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Csárdi, G., Nepusz, T.: The igraph software package for complex network research. Inter. Journal Complex Systems 1695 (2006)Google Scholar
  6. 6.
    Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159(2), 203–221 (1961)Google Scholar
  7. 7.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  8. 8.
    Ding, M., Chen, Y., Bressler, S.L.: Granger causality: Basic theory and application to neuroscience. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, pp. 437–460. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2006)Google Scholar
  9. 9.
    Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: Oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2(10), 704–716 (2001)CrossRefGoogle Scholar
  10. 10.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proc. Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 1999, pp. 251–262. ACM Press, New York (1999)CrossRefGoogle Scholar
  11. 11.
    Fischhoff, I.R., Sundaresan, S.R., Cordingley, J., Larkin, H.M., Sellier, M., Rubenstein, D.I.: Social relationships and reproductive state influence leadership roles in movements of plains zebra, equus burchellii. Anim. Behav. 73(5), 825–831 (2007)CrossRefGoogle Scholar
  12. 12.
    Kaminski, M.J., Blinowska, K.J.: A new method of the description of the information flow in the brain structures. Biol. Cybern. 65(3), 203–210 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The Web as a Graph: Measurements, Models, and Methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2–3), 169–195 (1999)CrossRefGoogle Scholar
  16. 16.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2006, pp. 611–617. ACM Press, New York (2006)CrossRefGoogle Scholar
  17. 17.
    Lahiri, M., Berger-Wolf, T.Y.: Periodic subgraph mining in dynamic networks. Knowl. Inf. Syst. 24, 467–497 (2010)CrossRefGoogle Scholar
  18. 18.
    Makeig, S., Bell, A.J., Jung, T., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 145–151. MIT Press, Cambridge (1996)Google Scholar
  19. 19.
    Moewes, C., Bola, M., Sabel, B.A., Kruse, R.: Brain connectivity associated with different damages of the visual system. In: NIPS 2011 Satellite Meeting on Causal Graphs: Linking Brain Structure to Function (2011)Google Scholar
  20. 20.
    Montez, T., Linkenkaer-Hansen, K., van Dijk, B.W., Stam, C.J.: Synchronization likelihood with explicit time-frequency priors. Neuroimage 33(4), 1117–1125 (2006)CrossRefGoogle Scholar
  21. 21.
    Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol 115(10), 2292–2307 (2004)CrossRefGoogle Scholar
  22. 22.
    Nolte, G., Ziehe, A., Krämer, N., Popescu, F., Müller, K.: Comparison of granger causality and phase slope index. In: J. Mach. Learn. Res., Workshop and Conference Proceedings, Causality: Objectives and Assessment, vol. 6, pp. 267–276 (2010)Google Scholar
  23. 23.
    Pearl, J.: Causal inference in statistics: An overview. Stat. Surv. 3, 96–146 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins: Struct. Funct. Bioinf. 54(1), 49–57 (2004)CrossRefGoogle Scholar
  25. 25.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  26. 26.
    Seth, A.K.: A MATLAB toolbox for granger causal connectivity analysis. J. Neurosci. Methods 186(2), 262–273 (2010)CrossRefGoogle Scholar
  27. 27.
    Snyman, J.A.: Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. In: Applied Optimization, vol. 97. Springer Science+Business Media, Inc., New York (2005)Google Scholar
  28. 28.
    Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)Google Scholar
  29. 29.
    Stam, C.J., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-World networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex 17(1), 92–99 (2007)CrossRefGoogle Scholar
  30. 30.
    Stam, C.J., van Dijk, B.W.: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. J. Phys. D: Nonlinear Phenom. 163(3–4), 236–251 (2002)zbMATHCrossRefGoogle Scholar
  31. 31.
    Varela, F., Lachaux, J., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–239 (2001)CrossRefGoogle Scholar
  32. 32.
    Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., He, Y.: Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Hum. Brain. Mapp. 30(5), 1511–1523 (2009)CrossRefGoogle Scholar
  33. 33.
    Wassermann, S., Faust, K.: Social Network Analysis: Methods and Applications. In: Stuctural Analysis in the Social Sciences, vol. 8. Cambridge University Press, Cambridge (1997)Google Scholar
  34. 34.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  35. 35.
    Wendling, F., Ansari-Asl, K., Bartolomei, F., Senhadji, L.: From EEG signals to brain connectivity: A model-based evaluation of interdependence measures. J. Neurosci. Methods 183(1), 9–18 (2009)CrossRefGoogle Scholar
  36. 36.
    White, D.R., Harary, F.: The cohesiveness of blocks in social networks: Node connectivity and conditional density. Sociol. Methodol. 31(1), 305–359 (2001)CrossRefGoogle Scholar
  37. 37.
    Wüst, S., Kasten, E., Sabel, B.A.: Blindsight after optic nerve injury indicates functionality of spared fibers. J. Cogn. Neurosci. 14(2), 243–253 (2002)CrossRefGoogle Scholar
  38. 38.
    Zhang, J.: A survey on streaming algorithms for massive graphs. In: Aggrawal, C.C., Wang, H. (eds.) Managing and Mining Graph Data, Advances in Database Systems, vol. 40, pp. 393–420. Springer Science+Business Media, LLC, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Pascal Held
    • 1
  • Christian Moewes
    • 1
  • Christian Braune
    • 1
  • Rudolf Kruse
    • 1
  • Bernhard A. Sabel
    • 2
  1. 1.Working Group on Computational Intelligence, Faculty of Computer ScienceOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Institute of Medical Psychology, Medical FacultyOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations