Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 285))

Abstract

Sets, hence fuzzy sets, may have a conjunctive or a disjunctive reading. In the conjunctive reading a (fuzzy) set represents an object of interest for which a (gradual rather than Boolean) composite description makes sense. In contrast disjunctive (fuzzy) sets refer to the use of sets as a representation of incomplete knowledge. They do not model objects or quantities, but partial information about an underlying object or a precise quantity. In this case the fuzzy set captures uncertainty, and its membership function is a possibility distribution.We call epistemic such fuzzy sets, since they represent states of incomplete knowledge. Distinguishing between ontic and epistemic fuzzy sets is important in information-processing tasks because there is a risk of misusing basic notions and tools, such as distance between fuzzy sets, variance of a fuzzy random variable, fuzzy regression, etc. We discuss several examples where the ontic and epistemic points of view yield different approaches to these concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudrit, C., Couso, I., Dubois, D.: Joint propagation of probability and possibility in risk analysis: Towards a formal framework. Int. J. Approx. Reas. 45, 82–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertoluzza, A.S.C., Salas, A., Corral, N.: On a new class of distances between fuzzy numbers. Mathware and Soft Comp. 2, 71–84 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Boukezzoula, R., Galichet, S., Bisserier, A.: A Midpoint-Radius approach to regression with interval data. Int. J. Approx. Reasoning 52, 1257–1271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouyssou, D., Dubois, D., Pirlot, M., Prade, H. (eds.): Decision-making Process — Concepts and Methods. ISTE London & Wiley, New York (2009)

    Google Scholar 

  5. Colubi, A.: Statistical inference about the means of fuzzy random variables: Applications to the analysis of fuzzy- and real-valued data. Fuzzy Sets Syst. 160(3), 344–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colubi, A., González-Rodríguez, G., Gil, M.A., Trutschnig, W.: Nonparametric criteria for supervised classification of fuzzy data. Int. J. Approx. Reas. 52, 1272–1282 (2011)

    Article  MATH  Google Scholar 

  7. Couso, I., Dubois, D.: On the Variability of the Concept of Variance for Fuzzy Random Variables. IEEE Trans. Fuzzy Syst. 17, 1070–1080 (2009)

    Article  Google Scholar 

  8. Couso, I., Sánchez, L.: Upper and lower probabilities induced by a fuzzy random variable. Fuzzy Sets Syst. 165, 1–23 (2011)

    Article  MATH  Google Scholar 

  9. De Campos, L.M., Lamata, M.T., Moral, S.: The concept of conditional fuzzy measure. Int. J. of Intell. Syst. 5, 237–246 (1990)

    Article  MATH  Google Scholar 

  10. De Cooman, G., Walley, P.: An imprecise hierarchical model for behaviour under uncertainty. Theory and Decision 52, 327–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diamond, P.: Fuzzy least squares. Inform. Sci. 46, 141–157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  14. Dubois, D.: Possibility theory and statistical reasoning. Comp. Stat. & Data Anal. 51, 47–69 (2006)

    Article  MATH  Google Scholar 

  15. Dubois, D.: The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets Syst. 184, 3–28 (2011)

    Article  MATH  Google Scholar 

  16. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  17. Dubois, D., Prade, H.: Incomplete conjunctive information. Comp. & Math. Appl. 15, 797–810 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubois, D., Prade, H.: When upper probabilities are possibility measures. Fuzzy Sets Syst. 49, 65–74 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets Syst. 90, 141–150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dubois, D., Prade, H.: Formal representations of uncertainty. In: [4], ch. 3, pp. 85–156 (2009)

    Google Scholar 

  21. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing 10, 273–297 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fagin, R., Halpern, J.Y.: A new approach to updating beliefs. In: Bonissone, P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence (UAI 1991), pp. 347–374. Elsevier, New York (1991)

    Google Scholar 

  24. Ferraro, M.B., Coppi, R., González-Rodríguez, G., Colubi, A.: A linear regression model for imprecise response. Int. J. Approx. Reas. 51, 759–770 (2010)

    Article  MATH  Google Scholar 

  25. Ferson, S., Ginzburg, L., Kreinovich, V., Longpre, L., Aviles, M.: Computing variance for interval data is NP-hard. ACM SIGACT News 33, 108–118 (2002)

    Article  Google Scholar 

  26. González-Rodríguez, G., Blanco, A., Colubi, A., Lubiano, M.A.: Estimation of a simple linear regression model for fuzzy random variables. Fuzzy Sets and Systems 160(3), 357–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. González-Rodríguez, G., Colubi, A., Gil, M.A.: Fuzzy data treated as functional data. A one-way ANOVA test approach. Comp. Stat. and Data Anal. 56(4), 943–955 (2012)

    Article  MATH  Google Scholar 

  28. Körner, R.: On the variance of fuzzy random variables. Fuzzy Sets Syst. 92, 83–93 (1997)

    Article  MATH  Google Scholar 

  29. Halpern, J.Y., Fagin, R., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (2003)

    Google Scholar 

  30. Herzig, A., Lang, J., Marquis, P.: Action representation and partially observable planning using epistemic logic. In: Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pp. 1067–1072. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  31. Kendall, D.G.: Foundations of a theory of random sets. In: Harding, E.F., Kendall, D.G. (eds.) Stochastic Geometry, pp. 322–376. J. Wiley & Sons, New York (1974)

    Google Scholar 

  32. Kruse, R., Meyer, K.: Statistics with Vague Data. D. Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  33. Kwakernaak, H.: Fuzzy random variables — I. definitions and theorems. Inform. Sci. 15, 1–29 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kwakernaak, H.: Fuzzy random variables — II. Algorithms and examples for the discrete case. Inform. Sci. 17, 253–278 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lindley, D.V.: Scoring rules and the inevitability of probability. Int. Statist. Rev. 50, 1–26 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Loquin, K., Dubois, D.: Kriging and Epistemic Uncertainty: A Critical Discussion. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 269–305. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  37. Loquin, K., Dubois, D.: Kriging with Ill-Known Variogram and Data. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS (LNAI), vol. 6379, pp. 219–235. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  38. Matheron, G.: Random Sets and Integral Geometry. J. Wiley & Sons, New York (1975)

    MATH  Google Scholar 

  39. Moore, R.: Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  40. Nguyen, H.T.: On random sets and belief functions. J. Math. Anal. Appl. 65, 531–542 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pichon, F., Dubois, D., Denoeux, T.: Relevance and truthfulness in information correction and fusion. Int. J. Approx. Reas. 53, 159–175 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Prade, H., Serrurier, M.: Maximum-likelihood principle for possibility distributions viewed as families of probabilities. In: Proc. IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2011), pp. 2987–2993. IEEE Press, Piscataway (2011)

    Google Scholar 

  43. Puri, M., Ralescu, D.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ramos-Guajardo, A.B., Lubiano, M.A.: K-sample tests for equality of variances of random fuzzy sets. Comp. Stat. & Data Anal. 56, 956–966 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shackle, G.L.S.: Decision, Order and Time in Human Affairs, 2nd edn. Cambridge University Press (1961)

    Google Scholar 

  46. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  47. Shafer, G., Tversky, A.: Languages and designs for probability. Cogn. Sci. 9, 309–339 (1985)

    Article  Google Scholar 

  48. Spadoni, M., Stefanini, L.: Computing the variance of interval and fuzzy data. Fuzzy Sets Syst. 165, 24–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Smets, P.: The normative representation of quantified beliefs by belief functions. Artif. Intell. 92, 229–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tanaka, H., Guo, P.: Possibilistic Data Analysis for Operations Research. Physica-Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  51. Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Inform. Sci. 179, 3964–3972 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall (1991)

    Google Scholar 

  53. Yager, R.R.: Set-based representations of conjunctive and disjunctive knowledge. Inform. Sci. 41, 1–22 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yen, J.: Generalizing the Dempster-Shafer theory to fuzzy sets. IEEE Trans. Syst. Man and Cybern. 20, 559–569 (1990)

    Article  MATH  Google Scholar 

  55. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, part I. Inform. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 1–28 (1978)

    Article  MathSciNet  Google Scholar 

  57. Zadeh, L.A.: PRUF — a meaning representation language for natural languages. Int. J. Man-Mach. Stud. 10, 395–460 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Dubois, D. (2013). Statistical Reasoning with Set-Valued Information: Ontic vs. Epistemic Views. In: Borgelt, C., Gil, M., Sousa, J., Verleysen, M. (eds) Towards Advanced Data Analysis by Combining Soft Computing and Statistics. Studies in Fuzziness and Soft Computing, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30278-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30278-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30277-0

  • Online ISBN: 978-3-642-30278-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics