A Supramolecular Sensing Platform in a Microfluidic Chip

Part of the Springer Theses book series (Springer Theses)


A supramolecular platform based on self-assembled monolayers (SAMs) has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids which are important for anthrax detection. An Eu(III)-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host–guest interactions. The self-assembly of the Eu(III)-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a high-throughput format that allows a general detection platform for both analyte systems in a single test run.


Microfluidic Device Phosphate Anion Bacterial Spore Picolinic Acid Dipicolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The major part of the work presented in this chapter was performed in collaboration with Dr. Bilge Eker in the Mesoscale Chemical Systems group of the University of Twente.


  1. 1.
    B. Eker, M. Deniz Yilmaz, S. Schlautmann, J.G.E. Gardeniers, J. Huskens, Int. J. Mol. Sci. 12(11), 7335–7351 (2011)CrossRefGoogle Scholar
  2. 2.
    A.L. Jenkins, O.M. Uy, G.M. Murray, Anal. Chem. 71, 373–378 (1999)CrossRefGoogle Scholar
  3. 3.
    P.R. Puopolo, P. Chamberlin, J.G. Flood, Clin. Chem. 38, 1838–1842 (1992)Google Scholar
  4. 4.
    W.H. van der Schalie, T.R. Shedd, M.W. Widder, L.M. Brennan, J. Appl. Toxicol. 24, 387–394 (2004)CrossRefGoogle Scholar
  5. 5.
    M.F. Rega, J.C. Reed, M. Pellecchia, Bioorg. Chem. 35, 113–120 (2007)CrossRefGoogle Scholar
  6. 6.
    P.J. Hajduk, T. Gerfin, J.M. Boehlen, M. Haberli, D. Marek, S.W. Fesik, J. Med. Chem. 42, 2315–2317 (1999)CrossRefGoogle Scholar
  7. 7.
    M.A. Huestis, M.L. Smith, Drug Discov. Today 3, 49–57 (2006)CrossRefGoogle Scholar
  8. 8.
    E. Fu, T. Chinowsky, K. Nelson, K. Johnston, T. Edwards, K. Helton, M. Grow, J.W. Miller, P. Yager, Ann. N. Y. Acad. Sci. 2007, 335–344 (1098)Google Scholar
  9. 9.
    A.M. Smith, S. Dave, S. Nie, L. True, X. Gao, Expert Rev. Mol. Diagn. 6, 232–244 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Haas, P. Then, A. Wild, W. Grange, S. Zorman, M. Hegner, M. Calame, U. Aebi, J. Flammer, B. Hecht, Anal. Chem. 82, 6299–6302 (2010)CrossRefGoogle Scholar
  11. 11.
    E. Lester, A. Ponce, IEEE Eng. Med. Biol. 21, 38–42 (2002)Google Scholar
  12. 12.
    E. D. Lester, G. Bearman, A. Ponce, IEEE Eng. Med. Biol. 23, 130–135 (2004)Google Scholar
  13. 13.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. (Kluwer Academic and Plenum Publishers, New York, 1999)Google Scholar
  14. 14.
    R. Narayanaswamy, O.S. Wolfbeis (eds.), Optical Sensors: Industrial, Environmental and Diagnostic Applications, vol. 1 (Springer Series on Chemical Sensors and Biosensors, Berlin, 2004)Google Scholar
  15. 15.
    R. Martinez-Manez, F. Sancenon, J. Fluoresc. 15, 267–285 (2005)CrossRefGoogle Scholar
  16. 16.
    R. Martinez-Manez, F. Sancenon, Chem. Rev. 103, 4419–4476 (2003)CrossRefGoogle Scholar
  17. 17.
    K. Niikura, A. Metzger, E.V. Anslyn, J. Am. Chem. Soc. 120, 8533–8534 (1998)CrossRefGoogle Scholar
  18. 18.
    A. Metzger, E.V. Anslyn, Angew. Chem. Int. Ed. 37, 649–652 (1998)CrossRefGoogle Scholar
  19. 19.
    N.S. Murray, S.P. Jarvis, T. Gunnlaugsson, Chem. Commun. 33, 4959–4961 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Massue, S.J. Quinn, T. Gunnlaugsson, J. Am. Chem. Soc. 130, 6900–6901 (2008)CrossRefGoogle Scholar
  21. 21.
    M.L. Cable, J.P. Kirby, K. Sorasaenee, H.B. Gray, A. Ponce, J. Am. Chem. Soc. 129, 1474–1475 (2007)CrossRefGoogle Scholar
  22. 22.
    K. Ai, B. Zhang, L. Lu, Angew. Chem. Int. Ed. 48, 304–308 (2009)CrossRefGoogle Scholar
  23. 23.
    M.D. Yilmaz, S. Hsu, D.N. Reinhoudt, A.H. Velders, J. Huskens, Angew. Chem. Int. Ed. 49, 5938–5941 (2010)Google Scholar
  24. 24.
    J.P. Leonard, C.B. Nolan, F. Stomeo, T. Gunnlaugsson, Top. Curr. Chem. 281, 1 (2007)CrossRefGoogle Scholar
  25. 25.
    J.P. Leonard, P. Jensen, T. McCabe, J.E. O’Brien, R.D. Peacock, P.E. Kruger, T. Gunnlaugsson, J. Am. Chem. Soc. 129, 10986 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Gunnlaugsson, F. Stomeo, Org. Biomol. Chem. 2007, 5 (1999)Google Scholar
  27. 27.
    K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
  28. 28.
    R.M. Crooks, A.J. Ricco, Acc. Chem. Res. 31, 219–227 (1998)CrossRefGoogle Scholar
  29. 29.
    A.E. Kaifer, Israel J. Chem. 36, 389–397 (1996)Google Scholar
  30. 30.
    R. Zimmerman, L. Basabe-Desmonts, F. van der Baan, D.N. Reinhoudt, M. Crego-Calama, J. Mater. Chem. 15, 2772–2777 (2005)CrossRefGoogle Scholar
  31. 31.
    Y.R. Kim, J.J. Kim, J.S. Kim, H. Kim, Adv. Mater. 20, 4428–4432 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Flink, F.C.J.M. van Veggel, D.N. Reinhoudt, Adv. Mater. 12, 1315–1328 (2000)CrossRefGoogle Scholar
  33. 33.
    N.J. van der Veen, S. Flink, M.A. Deij, R.J.M. Egberink, F.C.J.M. van Veggel, D.N. Reinhoudt, J. Am. Chem. Soc. 122, 6112–6113 (2000)CrossRefGoogle Scholar
  34. 34.
    M. Crego-Calama, D.N. Reinhoudt, Adv. Mater. 13, 1171–1174 (2001)CrossRefGoogle Scholar
  35. 35.
    L. Basabe-Desmonts, J. Beld, R.S. Zimmerman, J. Hernando, P. Mela, M.F. Garcia Parajo, N.F. Van Hulst, A. van den Berg, D.N. Reinhoudt, M. Crego-Calama, J. Am. Chem. Soc. 126, 7293–7299 (2004)CrossRefGoogle Scholar
  36. 36.
    C.M. Rudzinski, A.M. Young, D.G. Nocera, J. Am. Chem. Soc. 124, 1723–1727 (2002)CrossRefGoogle Scholar
  37. 37.
    J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, 5th edn. (W.H. Freeman, New York, 2002)Google Scholar
  38. 38.
    A. Ojida, I. Takashima, T. Kohira, H. Nonaka, I. Hamachi, J. Am. Chem. Soc. 130, 12095–12101 (2008)CrossRefGoogle Scholar
  39. 39.
    P.D. Beer, P.A. Gale, Angew. Chem. Int. Ed. 40, 486 (2001)CrossRefGoogle Scholar
  40. 40.
    Q. Li, P.K. Dasgupta, H. Temkin, Environ. Sci. Technol. 42, 2799–2804 (2008)CrossRefGoogle Scholar
  41. 41.
    D.A. Henderson, Science 283, 1279–1282 (1999)CrossRefGoogle Scholar
  42. 42.
    M. Enserink, Science 294, 1266–1267 (2001)CrossRefGoogle Scholar
  43. 43.
    P.T. Yung, E.D. Lester, G. Bearman, A. Ponce, Biotechnol. Bioeng. 98, 864–871 (2007)CrossRefGoogle Scholar
  44. 44.
    G.F. Bailey, S. Karp, L.E. Sacks, J. Bacteriol. 89, 984 (1965)Google Scholar
  45. 45.
    D.R. Walt, Anal. Chem. 72, 738a–746a (2000)CrossRefGoogle Scholar
  46. 46.
    L.J. Rode, J.W. Foster, Nature 188, 1132–1134 (1960)CrossRefGoogle Scholar
  47. 47.
    D.L. Rosen, Rev. Anal. Chem. 18, 1–21 (1999)CrossRefGoogle Scholar
  48. 48.
    P. Mela, S. Onclin, M.H. Goedbloed, S. Levi, M.F. Garcia-Parajo, N.F. van Hulst, B.J. Ravoo, D.N. Reinhoudt, A. van den Berg, Lab Chip 5, 163–170 (2005)CrossRefGoogle Scholar
  49. 49.
    T. Vilkner, D. Janasek, A. Manz, Anal. Chem. 7612, 3373–3385 (2004)CrossRefGoogle Scholar
  50. 50.
    H. Andersson, A. Van den Berg, Sens. Actuators B 92, 315–325 (2003)CrossRefGoogle Scholar
  51. 51.
    H.Y. Fan, F.Y. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. Lopez, C.J. Brinker, Nature 405, 56–60 (2000)CrossRefGoogle Scholar
  52. 52.
    A. Mulder, J. Huskens, D.N. Reinhoudt, Org. Biomol. Chem. 2, 3409 (2004)CrossRefGoogle Scholar
  53. 53.
    M.J.W. Ludden, D.N. Reinhoudt, J. Huskens, Chem. Soc. Rev. 35, 1122–1134 (2006)CrossRefGoogle Scholar
  54. 54.
    A. Metzger, V.M. Lynch, E.V. Anslyn, Angew. Chem. Int. Ed. 36, 862–865 (1997)CrossRefGoogle Scholar
  55. 55.
    M.J. Berridge, Nature 361, 315 (1993)CrossRefGoogle Scholar
  56. 56.
    N. Shao, J. Jin, G. Wang, Y. Zhang, R. Yang, J. Yuan, Chem. Commun. 1127–1129 (2008)Google Scholar
  57. 57.
    L.J. Charbonniere, R. Schurhammer, S. Mameri, G. Wipff, R.F. Ziessel, Inorg. Chem. 44, 7151–7160 (2005)CrossRefGoogle Scholar
  58. 58.
    S.M. Shanbhag, G.R. Choppin, Inorg. Chim. Acta 139, 119–120 (1987)CrossRefGoogle Scholar
  59. 59.
    Y. Kanekiyo, R. Naganawa, H. Tao, Chem. Commun. 1006–1007 (2004)Google Scholar
  60. 60.
    C. Bazzicalupi, S. Biagini, A. Bencini, E. Faggi, C. Giorgi, I. Matera, B. Valtancoli, Chem. Commun. 4087–4089 (2006)Google Scholar
  61. 61.
    G.V. Zyryanov, M.A. Palacios, P. Anzenbacher Jr, Angew. Chem. Int. Ed. 46, 7849–7852 (2007)CrossRefGoogle Scholar
  62. 62.
    J.P. Kirby, M.L. Cable, D.J. Levine, H.B. Gray, A. Ponce, Anal. Chem. 80, 5750–5754 (2008)CrossRefGoogle Scholar
  63. 63.
    S.L. Wu, W.D. Horrocks Jr, Anal. Chem. 68, 394–401 (1996)CrossRefGoogle Scholar
  64. 64.
    P.R. Ashton, R. Königer, J.F. Stoddart, D. Alker, V.D. Harding, J. Org. Chem. 61, 903–908 (1996)CrossRefGoogle Scholar
  65. 65.
    S.H. Hsu, M.D. Yilmaz, C. Blum, V. Subramaniam, D.N. Reinhoudt, A.H. Velders, J. Huskens, J. Am. Chem. Soc. 131, 12567–12569 (2009)CrossRefGoogle Scholar
  66. 66.
    J. Yuan, K. Matsumoto, Anal. Sci. 12, 31–36 (1996)CrossRefGoogle Scholar
  67. 67.
    J.G.E Gardeniers, R.E. Oosterbroek, A. van den Berg, in Lab-on-a-chip: Miniaturized systems for (bio)chemical analysis and synthesis (Elsevier, Amsterdam, 2003), pp. 37–64Google Scholar
  68. 68.
    H. Wensink, M.C. Elwenspoek, Wear 253, 1035–1043 (2002)CrossRefGoogle Scholar
  69. 69.
    M.J.W. Ludden, X.Y. Ling, T. Gang, W.P. Bula, H.J.G.E. Gardeniers, D.N. Reinhoudt, J. Huskens, Chem. Eur. J. 14, 136–142 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Stoddart Mechanostereochemistry Group, Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations