Ratiometric Fluorescent Detection of an Anthrax Biomarker at Molecular Printboards

Part of the Springer Theses book series (Springer Theses)


Anthrax is an acute disease, concurrently a potential biological warfare agent caused by Bacillus Anthracis. The accurate, rapid, sensitive, and selective detection of Bacillus spores plays a vital role in order to prevent a biological attack or outbreak of disease. Bacterial spores contain a main core cell which is enclosed by protective layers. As a major component of these protective layers, bacterial spores contain up to 1 M dipicolinic acid (DPA), accounting for 5−15 % of the dry mass of the bacterial spore. Hence, DPA is a convenient biomarker for these spores. In recent years a number of biological and chemical detection methods for Bacillus Anthracis spores have been investigated. Biological methods are based on polymerase chain reactions and immunoassays. Important chemical methods employ vibrational spectroscopy (FT-IR, Raman and SERS) and photoluminescence. Among them, lanthanide (Ln3+)-based luminescent detection of DPA has been most promising owing to the unique photophysical properties of Ln3+-DPA chelates, including their bright luminescence upon sensitization by DPA, the long luminescence lifetimes compared to free Ln3+, and the concomitantly high luminescence enhancement ratio upon coordination of DPA to the Ln3+ center. Besides the use of DPA itself as a sensitizer, ratiometric fluorescent detection of anthrax spores can be achieved through the displacement of a different sensitizer by DPA.


Bacillus Anthracis Bacterial Spore Isonicotinic Acid Dipicolinic Acid Microcontact Printing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Shu-Han Hsu is acknowledged for making fruithful discussions.


  1. 1.
    M. Deniz Yilmaz, S.-H. Hsu, D.N. Reinhoudt, A.H. Velders, J. Huskens, Angew. Chem. Int. Ed. 49, 5938−5941 (2010)Google Scholar
  2. 2.
    D.A. Henderson, Science 283, 1279–1282 (1999)CrossRefGoogle Scholar
  3. 3.
    M. Enserink, Science 294, 1266–1267 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Enserink, Science 294, 490–491 (2001)CrossRefGoogle Scholar
  5. 5.
    P.T. Yung, E.D. Lester, G. Bearman, A. Ponce, Biotechnol. Bioeng. 98, 864–871 (2007)CrossRefGoogle Scholar
  6. 6.
    W.T. Sanderson, R.R. Stoddard, A.S. Echt, C.A. Piacitelli, D. Kim, J. Horan, M.M. Davies, R.E. McCleery, P. Muller, T.M. Schnorr, E.M. Ward, T.R. Hales, J. Appl. Microbiol. 96, 1048–1056 (2004)CrossRefGoogle Scholar
  7. 7.
    R.J. Sharp, A.G. Roberts, J. Chem. Technol. Biotechnol. 81, 1612–1625 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Zourob, S. Elwary, A. Turner, Principles of Bacterial Detection : Biosensors, Recognition Receptors, and Microsystems (Springer, New York, 2008)CrossRefGoogle Scholar
  9. 9.
    G. Coimbatore, S. M. Presley, J. Boyd, E. J. Marsland, G. P. Cobb in Advances in Biological and Chemical Terrorism Countermeasures, ed. by R.J. Kendall, S.M. Presley, G.P. Austin, P.N. Smith (CRC Press, Boca Raton, 2008) pp. 159–175Google Scholar
  10. 10.
    P.A. Lieberzeit, F.L. Dickert, Anal. Bioanal. Chem. 391, 1629–1639 (2008)CrossRefGoogle Scholar
  11. 11.
    G.F. Bailey, S. Karp, L.E. Sacks, J. Bacteriol. 89, 984 (1965)Google Scholar
  12. 12.
    R. Goodacre, B. Shann, R.J. Gilbert, E.M. Timmins, A.C. McGovern, B.K. Alsberg, D.B. Kell, N.A. Logan, Anal. Chem. 72, 119–127 (2000)CrossRefGoogle Scholar
  13. 13.
    D.R. Walt, Anal. Chem. 72, 738a–746a (2000)CrossRefGoogle Scholar
  14. 14.
    G.W. Gould, A.J. Sale, W.A. Hamilton, J. Gen. Microbiol. 57, R28 (1969)Google Scholar
  15. 15.
    L.J. Rode, J.W. Foster, Nature 188, 1132–1134 (1960)CrossRefGoogle Scholar
  16. 16.
    H.S. Levinson, M.T. Hyatt, J. Bacteriol. 70, 368–374 (1955)Google Scholar
  17. 17.
    W. Hurtle, E. Bode, D.A. Kulesh, R.S. Kaplan, J. Garrison, D. Bridge, M. House, M.S. Frye, B. Loveless, D. Norwood, J. Clin. Microbiol. 42, 179–185 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Fasanella, S. Losito, R. Adone, F. Ciuchini, T. Trotta, S.A. Altamura, D. Chiocco, G. Ippolito, J. Clin. Microbiol. 41, 896–899 (2003)CrossRefGoogle Scholar
  19. 19.
    R.H. Yolken, S.B. Wee, J. Clin. Microbiol. 19, 356–360 (1984)Google Scholar
  20. 20.
    D. King, V. Luna, A. Cannons, J. Cattani, P. Amuso, J. Clin. Microbiol. 41, 3454–3455 (2003)CrossRefGoogle Scholar
  21. 21.
    G. Thompson, C. Forster, Water Res. 37, 2636–2644 (2003)CrossRefGoogle Scholar
  22. 22.
    R.M. Jarvis, R. Goodacre, Anal. Chem. 76, 40–47 (2004)CrossRefGoogle Scholar
  23. 23.
    X.Y. Zhang, M.A. Young, O. Lyandres, R.P. Van Duyne, J. Am. Chem. Soc. 127, 4484–4489 (2005)CrossRefGoogle Scholar
  24. 24.
    P.M. Pellegrino, N.F. Fell, J.B. Gillespie, Anal. Chim. Acta 455, 167–177 (2002)CrossRefGoogle Scholar
  25. 25.
    J.P. Kirby, M.L. Cable, D.J. Levine, H.B. Gray, A. Ponce, Anal. Chem. 80, 5750–5754 (2008)CrossRefGoogle Scholar
  26. 26.
    M.L. Cable, J.P. Kirby, K. Sorasaenee, H.B. Gray, A. Ponce, J. Am. Chem. Soc. 129, 1474–1475 (2007)CrossRefGoogle Scholar
  27. 27.
    E.D. Lester, A. Ponce, IEEE Eng. Med. Biol. 21, 38–42 (2002)CrossRefGoogle Scholar
  28. 28.
    E.D. Lester, G. Bearman, A. Ponce, IEEE Eng. Med. Biol. 23, 130–135 (2004)CrossRefGoogle Scholar
  29. 29.
    Q.Y. Li, P.K. Dasgupta, H.K. Temkin, Environ. Sci. Technol. 42, 2799–2804 (2008)CrossRefGoogle Scholar
  30. 30.
    K.L. Ai, B.H. Zhang, L.H. Lu, Angew. Chem. Int. Ed. 48, 304–308 (2009)CrossRefGoogle Scholar
  31. 31.
    M.L. Cable, J.P. Kirby, D.J. Levine, M.J. Manary, H.B. Gray, A. Ponce, J. Am. Chem. Soc. 131, 9562–9570 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Zimmerman, L. Basabe-Desmonts, F. van der Baan, D.N. Reinhoudt, M. Crego-Calama, J. Mater. Chem. 15, 2772–2777 (2005)CrossRefGoogle Scholar
  33. 33.
    Y.R. Kim, H.J. Kim, J.S. Kim, H. Kim, Adv. Mat. 20, 4428–4432 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Crego-Calama, D.N. Reinhoudt, Adv. Mater. 13, 1171–1174 (2001)CrossRefGoogle Scholar
  35. 35.
    H.J. Kim, S.J. Lee, S.Y. Park, J.H. Jung, J.S. Kim, Adv. Mater. 20, 3229–3234 (2008)CrossRefGoogle Scholar
  36. 36.
    L. Basabe-Desmonts, J. Beld, R.S. Zimmerman, J. Hernando, P. Mela, M.F.G. Parajo, N.F. van Hulst, A. van den Berg, D.N. Reinhoudt, M. Crego-Calama, J. Am. Chem. Soc. 126, 7293–7299 (2004)CrossRefGoogle Scholar
  37. 37.
    M.S. Tremblay, M. Halim, D. Sames, J. Am. Chem. Soc. 129, 7570–7577 (2007)CrossRefGoogle Scholar
  38. 38.
    H. Takakusa, K. Kikuchi, Y. Urano, H. Kojima, T. Nagano, Chem. Eur. J. 9, 1479–1485 (2003)CrossRefGoogle Scholar
  39. 39.
    J.R. Acharya, H. Zhang, X. Li, E.E. Nesterov, J. Am. Chem. Soc. 131, 880–881 (2009)CrossRefGoogle Scholar
  40. 40.
    M.J.W. Ludden, D.N. Reinhoudt, J. Huskens, Chem. Soc. Rev. 35, 1122 (2006)CrossRefGoogle Scholar
  41. 41.
    S.H. Hsu, M.D. Yilmaz, C. Blum, V. Subramaniam, D.N. Reinhoudt, A.H. Velders, J. Huskens, J. Am. Chem. Soc. 131, 12567–12569 (2009)CrossRefGoogle Scholar
  42. 42.
    H.S. Shafaat, A. Ponce, Appl. Environ. Microbiol. 72, 6808–6814 (2006)CrossRefGoogle Scholar
  43. 43.
    S.L. Wu, W.D. Horrocks Jr, Anal. Chem. 68, 394–401 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Stoddart Mechanostereochemistry Group, Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations