Advertisement

Expression of Sensitized Eu3+ Luminescence at a Multivalent Interface

  • Mahmut Deniz Yilmaz
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The assembly of a mixture of guest-functionalized antenna and Eu3+-complexed ligand molecules in a patterned fashion onto a receptor surface was shown to provide local and efficient sensitized Eu3+ emission. Coordination of a carboxylate group of the antenna to the Eu3+ center and noncovalent anchoring of both components to the receptor surface appeared to be prerequisites for efficient energy transfer. A Job plot at the surface confirmed that coordination of the antenna to the Eu3+ center occured in a 1:1 fashion. The efficiency of this intramolecular binding process is promoted by the high effective concentration of both complementary moieties at the surface. The system constitutes, therefore an example of supramolecular expression of a complex consisting of several different building blocks which signals its own correct formation.

Keywords

Lanthanide Complex Triethylene Glycol Benzyl Ether Microcontact Printing Tetraethylene Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The major part of the work presented in this chapter was performed in collaboration with Shu-Han Hsu. Christian Blum is acknowledged for performing the local fluorescence emission spectra and lifetime measurements.

References

  1. 1.
    S.-H. Hsu, M.D. Yilmaz, C. Blum, V. Subramaniam, D.N. Reinhoudt, A.H. Velders, J. Huskens, J. Am. Chem. Soc. 131, 12567–12569 (2009)Google Scholar
  2. 2.
    D.N. Reinhoudt, M. Crego-Calama, Science 295, 2403–2407 (2002)CrossRefGoogle Scholar
  3. 3.
    V.E. Campbell, J.R. Nitschke, Synlett 2008, 3077–3090 (2008)CrossRefGoogle Scholar
  4. 4.
    C.A.M. Bradley, J. Holliday, Angew. Chem. Int. Ed. 40, 2022–2043 (2001)CrossRefGoogle Scholar
  5. 5.
    J.-M. Lehn, Chem. Soc. Rev. 36, 151–160 (2007)CrossRefGoogle Scholar
  6. 6.
    J.-M. Lehn, Proc. Natl. Acad. Sci. USA 99, 4763–4768 (2002)CrossRefGoogle Scholar
  7. 7.
    G.M. Whitesides, R.F. Ismagilov, Science 284, 89–92 (1999)CrossRefGoogle Scholar
  8. 8.
    R.F. Ludlow, S. Otto, Chem. Soc. Rev. 37, 101–108 (2008)CrossRefGoogle Scholar
  9. 9.
    B.C. Gibb, Nat. Chem. 1, 17–18 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Langner, S.L. Tait, N. Lin, C. Rajadurai, M. Ruben, K. Kern, Proc. Natl. Acad. Sci. USA, 104, 17927–17930 (2007)Google Scholar
  11. 11.
    A. Mulder, J. Huskens, D.N. Reinhoudt, Org. Biomol. Chem. 2, 3409–3424 (2004)CrossRefGoogle Scholar
  12. 12.
    M.J.W. Ludden, D.N. Reinhoudt, J. Huskens, Chem. Soc. Rev. 35, 1122–1134 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Eigen, The Hypercycle: A Principle of Natural Self Organization (Springer-Verlag, Berlin, 1979)Google Scholar
  14. 14.
    M.L.W. Ludden, A. Mulder, K. Schulze, V. Subramaniam, R. Tampe, J. Huskens, Chem. Eur. J. 14, 2044–2051 (2008)CrossRefGoogle Scholar
  15. 15.
    O. Crespo-Biel, C.W. Lim, B.J. Ravoo, D.N. Reinhoudt, J. Huskens, J. Am. Chem. Soc. 128, 17024–17032 (2006)CrossRefGoogle Scholar
  16. 16.
    C.W. Lim, O. Crespo-Biel, M.C.A. Stuart, D.N. Reinhoudt, J. Huskens, B.J. Ravoo, Proc. Natl. Acad. Sci. USA 104, 6986–6991 (2007)CrossRefGoogle Scholar
  17. 17.
    M.F. Hazenkamp, G. Blasse, N. Sabbatini, J. Phys. Chem. 95, 783–787 (1991)CrossRefGoogle Scholar
  18. 18.
    G.E. Buonocore, H. Li, B. Marciniak, Coord. Chem. Rev. 99, 55–87 (1990)CrossRefGoogle Scholar
  19. 19.
    L. Dexter, J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  20. 20.
    J.J. Michels, J. Huskens, D.N. Reinhoudt, J. Am. Chem. Soc. 124, 2056–2064 (2002)CrossRefGoogle Scholar
  21. 21.
    E. Delgado-Pinar, J.C. Frias, L.J. Jimenez-Borreguero, M.T. Albelda, J. Alarcon, E. Garcia-Espana, Chem. Commun. 28(32), 3392–3394 (2007)Google Scholar
  22. 22.
    D.J. Lewis, T.M. Day, J.V. MacPherson, Z. Pikramenou, Chem. Commun. 13, 1433–1435 (2006)Google Scholar
  23. 23.
    J. Massue, S.J. Quinn, T. Gunnlaugsson, J. Am. Chem. Soc. 130, 6900–6901 (2008)CrossRefGoogle Scholar
  24. 24.
    K.L. Ai, B.H. Zhang, L.H. Lu, Angew. Chem. Int. Ed. 48, 304–308 (2009)CrossRefGoogle Scholar
  25. 25.
    B.I. Ipe, K. Yoosaf, K.G. Thomas, J. Am. Chem. Soc. 128, 1907–1913 (2006)CrossRefGoogle Scholar
  26. 26.
    J.P. Leonard, C.M.G. dos Santos, S.E. Plush, T. McCabe, T. Gunnlaugsson, Chem. Commun. 2(2), 129–131 (2007)Google Scholar
  27. 27.
    P. Luisi, Fundam. Chem. 4, 1572–8463 (2002)Google Scholar
  28. 28.
    T. Auletta, B. Dordi, A. Mulder, A. Sartori, S. Onclin, C.M. Bruinink, M. Peter, C.A. Nijhuis, H. Beijleveld, H. Schonherr, G.J. Vancso, A. Casnati, R. Ungaro, B.J. Ravoo, J. Huskens, D.N. Reinhoudt, Angew. Chem. Int. Ed. 43, 369–373 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Stoddart Mechanostereochemistry Group, Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations