Advertisement

Orthogonal Supramolecular Interaction Motifs for Functional Monolayer Architectures

  • Mahmut Deniz Yilmaz
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter gives an overview on the recent developments of orthogonal supramolecular interactions on surfaces. The first part deals with the use of noncovalent interactions, including hydrogen bonding, metal coordination, electrostatics, and host–guest interactions, to modify surfaces. The second part describes the combination of different, orthogonal supramolecular interaction motifs for the generation of hybrid assemblies and materials. The integration of different supramolecular systems is essential for the self-assembly of complex architectures on surfaces.

Keywords

Hydrogen Bonding Interaction Gold Surface Metal Coordination Supramolecular Architecture Guest Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.-M. Lehn, Supramolecular Chemistry Concepts and Perspectives (VCH, Germany, 1995)CrossRefGoogle Scholar
  2. 2.
    T.J. Gardner, C.D. Frisbie, M.S. Wrighton, J. Am. Chem. Soc. 117, 6927–6933 (1995)CrossRefGoogle Scholar
  3. 3.
    J.J. Hickman, P.E. Laibinis, D.I. Auerbach, C.F. Zou, T.J. Gardner, G.M. Whitesides, M.S. Wrighton, Langmuir 8, 357–359 (1992)CrossRefGoogle Scholar
  4. 4.
    P.E. Laibinis, J.J. Hickman, M.S. Wrighton, G.M. Whitesides, Science 245, 845–847 (1989)CrossRefGoogle Scholar
  5. 5.
    J.M. Pollino, M. Weck, Chem. Soc. Rev. 34, 193–207 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Tien, A. Terfort, G.M. Whitesides, Langmuir 13, 5349–5355 (1997)CrossRefGoogle Scholar
  7. 7.
    J.A.A.W. Elemans, A.E. Rowan, R.J.M. Nolte, J. Mater. Chem. 13, 2661–2670 (2003)CrossRefGoogle Scholar
  8. 8.
    H. Hofmeier, U.S. Schubert, Chem Commun. 2423–2432 (2005)Google Scholar
  9. 9.
    G.M. Credo, A.K. Boal, K. Das, T.H. Galow, V.M. Rotello, D.L. Feldheim, C.B. Gorman, J. Am. Chem. Soc. 124, 9036–9037 (2002)CrossRefGoogle Scholar
  10. 10.
    T.B. Norsten, E. Jeoung, R.J. Thibault, V.M. Rotello, Langmuir 19, 7089–7093 (2003)CrossRefGoogle Scholar
  11. 11.
    G. Cooke, J. Couet, J.F. Garety, C.Q. Ma, S. Mabruk, G. Rabani, V.M. Rotello, V. Sindelar, P. Woisel, Tetrahedron Lett. 47, 3763–3766 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Motesharei, D.C. Myles, J. Am. Chem. Soc. 120, 7328–7336 (1998)CrossRefGoogle Scholar
  13. 13.
    J.J. Garcia-Lopez, S. Zapotoczny, P. Timmerman, F.C.J.M. van Veggel, G.J. Vancso, M. Crego-Calama, D.N. Reinhoudt, Chem. Commun. 352–353 (2003)Google Scholar
  14. 14.
    R. Zirbs, F. Kienberger, P. Hinterdorfer, W.H. Binder, Langmuir 21, 8414–8421 (2005)CrossRefGoogle Scholar
  15. 15.
    X. Yu, B. Samanta, H. Xu, P. Arumugam, Y. Ofir, B.J. Jordan, V.M. Rotello, Small 5, 86–89 (2009)CrossRefGoogle Scholar
  16. 16.
    C. Subramani, S. Dickert, Y.C. Yeh, M.T. Tuominen, V.M. Rotello, Langmuir 27, 1543–1545 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Maskus, H.D. Abruna, Langmuir 12, 4455–4462 (1996)CrossRefGoogle Scholar
  18. 18.
    K. Kanaizuka, M. Murata, Y. Nishimori, I. Mori, K. Nishio, H. Masuda, H. Nishihara, Chem. Lett. 34, 534–535 (2005)CrossRefGoogle Scholar
  19. 19.
    C. Haensch, M. Chiper, C. Ulbricht, A. Winter, S. Hoeppener, U.S. Schubert, Langmuir 24, 12981–12985 (2008)CrossRefGoogle Scholar
  20. 20.
    S.A. Levi, P. Guatteri, F.C.J.M. van Veggel, G.J. Vancso, E. Dalcanale, D.N. Reinhoudt, Angew. Chem. Int. Ed. 40, 1892–1896 (2001)CrossRefGoogle Scholar
  21. 21.
    E. Menozzi, R. Pinalli, E.A. Speets, B.J. Ravoo, E. Dalcanale, D.N. Reinhoudt, Chem. Eur. J. 10, 2199–2206 (2004)CrossRefGoogle Scholar
  22. 22.
    I. Doron-Mor, H. Cohen, S.R. Cohen, R. Popovitz-Biro, A. Shanzer, A. Vaskevich, I. Rubinstein, Langmuir 20, 10727–10733 (2004)CrossRefGoogle Scholar
  23. 23.
    H.C. Yang, K. Aoki, H.G. Hong, D.D. Sackett, M.F. Arendt, S.L. Yau, C.M. Bell, T.E. Mallouk, J. Am. Chem. Soc. 115, 11855–11862 (1993)CrossRefGoogle Scholar
  24. 24.
    D.L. Thomsen, T. Phely-Bobin, F. Papadimitrakopoulos, J. Am. Chem. Soc. 120, 6177–6178 (1998)CrossRefGoogle Scholar
  25. 25.
    E. Soto, J.C. MacDonald, C.G.F. Cooper, W.G. McGimpsey, J. Am. Chem. Soc. 125, 2838–2839 (2003)CrossRefGoogle Scholar
  26. 26.
    C. Templeton, F.P. Zamborini, W.P. Wuelfing, R.W. Murray, Langmuir 16, 6682–6688 (2000)CrossRefGoogle Scholar
  27. 27.
    W.P. Wuelfing, F.P. Zamborini, A.C. Templeton, X.G. Wen, H. Yoon, R.W. Murray, Chem. Mater. 13, 87–95 (2001)CrossRefGoogle Scholar
  28. 28.
    F.P. Zamborini, J.F. Hicks, R.W. Murray, J. Am. Chem. Soc. 122, 4514–4515 (2000)CrossRefGoogle Scholar
  29. 29.
    F.P. Zamborini, M.C. Leopold, J.F. Hicks, P.J. Kulesza, M.A. Malik, R.W. Murray, J. Am. Chem. Soc. 124, 8958–8964 (2002)CrossRefGoogle Scholar
  30. 30.
    M. Wanunu, R. Popovitz-Biro, H. Cohen, A. Vaskevich, I. Rubinstein, J. Am. Chem. Soc. 127, 9207–9215 (2005)CrossRefGoogle Scholar
  31. 31.
    S.W. Chen, R.J. Pei, T.F. Zhao, D.J. Dyer, J. Phys. Chem. B 106, 1903–1908 (2002)CrossRefGoogle Scholar
  32. 32.
    H.J. van Friggeri, T. Manen, X.M. Auletta, S. Li, H. Zapotoczny, G.J. Schonherr, J. Vancso, F.C.J.M. van Huskens, D.N. Veggel, J. Reinhoudt, J. Am. Chem. Soc. 123, 6388–6395 (2001)CrossRefGoogle Scholar
  33. 33.
    N. Crivillers, M. Mas-Torrent, S. Perruchas, N. Roques, J. Vidal-Gancedo, J. Veciana, C. Rovira, L. Basabe-Desmonts, B.J. Ravoo, M. Crego-Calama, D.N. Reinhoudt, Angew. Chem. Int. Ed. 46, 2215–2219 (2007)CrossRefGoogle Scholar
  34. 34.
    E.J. Calvo, F. Battaglini, C. Danilowicz, A. Wolosiuk, M. Otero, Faraday Discuss. 47–65 (2000)Google Scholar
  35. 35.
    Y. Saga, T.Y. Kim, T. Hisai, H. Tamiaki, Thin Solid Films 500, 278–282 (2006)CrossRefGoogle Scholar
  36. 36.
    T.P. Burgin, J.C. Lewenstein, D. Werho, Langmuir 21, 6596–6602 (2005)CrossRefGoogle Scholar
  37. 37.
    J.P. Opatkiewicz, M.C. LeMieux, Z.N. Bao, ACS Nano 4, 1167–1177 (2010)CrossRefGoogle Scholar
  38. 38.
    F. Auer, M. Scotti, A. Ulman, R. Jordan, B. Sellergren, J. Garno, G.Y. Liu, Langmuir 16, 7554–7557 (2000)CrossRefGoogle Scholar
  39. 39.
    A. Gole, C.J. Orendorff, C.J. Murphy, Langmuir 20, 7117–7122 (2004)CrossRefGoogle Scholar
  40. 40.
    A. Gole, S.R. Sainkar, S.R. Sastry, Chem. Mater. 12, 1234–1239 (2000)CrossRefGoogle Scholar
  41. 41.
    K. Akamatsu, A. Kimura, H. Matsubara, S. Ikeda, H. Nawafune, Langmuir 21, 8099–8102 (2005)CrossRefGoogle Scholar
  42. 42.
    C.A. Fustin, G. Glasser, H.W. Spiess, U. Jonas, Langmuir 20, 9114–9123 (2004)CrossRefGoogle Scholar
  43. 43.
    H. Tanaka, M. Mitsuishi, T. Miyashita, Langmuir 19, 3103–3105 (2003)CrossRefGoogle Scholar
  44. 44.
    J.W. Zheng, Z.H. Zhu, H.F. Chen, Z.F. Liu, Langmuir 16, 4409–4412 (2000)CrossRefGoogle Scholar
  45. 45.
    D.J. Zhou, A. Bruckbauer, C. Abell, D. Klenerman, D.J. Kang, Adv. Mater. 17, 1243–1248 (2005)CrossRefGoogle Scholar
  46. 46.
    P. Maury, M. Peter, V. Mahalingam, D.N. Reinhoudt, J. Huskens, Adv. Funct. Mater. 15, 451–457 (2005)CrossRefGoogle Scholar
  47. 47.
    L.M. Demers, C.A. Mirkin, Angew. Chem. Int. Ed. 40, 3069–3071 (2001)CrossRefGoogle Scholar
  48. 48.
    J.C. Garno, Y.Y. Yang, N.A. Amro, S. Cruchon-Dupeyrat, S.W. Chen, G.Y. Liu, Nano Lett. 3, 389–395 (2003)CrossRefGoogle Scholar
  49. 49.
    S. Hoeppener, R. Maoz, S.R. Cohen, L.F. Chi, H. Fuchs, J. Sagiv, Adv. Mater. 14, 1036–1041 (2002)CrossRefGoogle Scholar
  50. 50.
    S. Hoeppener, U.S. Schubert, Small 1, 628–632 (2005)CrossRefGoogle Scholar
  51. 51.
    S.T. Liu, R. Maoz, J. Sagiv, Nano Lett. 4, 845–851 (2004)CrossRefGoogle Scholar
  52. 52.
    S.T. Liu, R. Maoz, G. Schmid, J. Sagiv, Nano Lett. 2, 1055–1060 (2002)CrossRefGoogle Scholar
  53. 53.
    R. Maoz, S.R. Cohen, J. Sagiv, Adv. Mater. 11, 55–61 (1999)CrossRefGoogle Scholar
  54. 54.
    R. Maoz, E. Frydman, S.R. Cohen, J. Sagiv, Adv. Mater. 12, 725–731 (2000)CrossRefGoogle Scholar
  55. 55.
    D. Wouters, U.S. Schubert, Mater. Chem. 15, 2353–2355 (2005)CrossRefGoogle Scholar
  56. 56.
    A. Friggeri, F.C.J.M. van Veggel, D.N. Reinhoudt, Chem. Eur. J. 5, 3595–3602 (1999)CrossRefGoogle Scholar
  57. 57.
    A. Friggeri, F.C.J.M. van Veggel, D.N. Reinhoudt, R.P.H. Kooyman, Langmuir 14, 5457–5463 (1998)CrossRefGoogle Scholar
  58. 58.
    B.H. Huisman, R.P.H. Kooyman, F.C.J.M. van Veggel, D.N. Reinhoudt, Adv. Mater. 8, 561–564 (1996)CrossRefGoogle Scholar
  59. 59.
    J.D. Faull, V.K. Gupta, Langmuir 17, 1470–1476 (2001)CrossRefGoogle Scholar
  60. 60.
    S.Y. Jon, N. Selvapalam, D.H. Oh, J.K. Kang, S.Y. Kim, Y.J. Jeon, J.W. Lee, K. Kim, J. Am. Chem. Soc. 125, 10186–10187 (2003)CrossRefGoogle Scholar
  61. 61.
    Q. An, G.T. Li, C.G. Tao, Y. Li, Y.G. Wu, W.X. Zhang, Chem. Commun. 1989–1991 (2008)Google Scholar
  62. 62.
    J.F. Young, H.D. Nguyen, L.T. Yang, J. Huskens, P. Jonkheijm, L. Brunsveld, ChemBioChem 11, 180–183 (2010)CrossRefGoogle Scholar
  63. 63.
    T. Auletta, B. Dordi, A. Mulder, A. Sartori, S. Onclin, C.M. Bruinink, M. Peter, C.A. Nijhuis, H. Beijleveld, H. Schonherr, G.J. Vancso, A. Casnati, R. Ungaro, B.J. Ravoo, J. Huskens, D.N. Reinhoudt, Angew. Chem. Int. Ed. 43, 369–373 (2004)CrossRefGoogle Scholar
  64. 64.
    I.A. Banerjee, L.T. Yu, H. Matsui, J. Am. Chem. Soc. 125, 9542–9543 (2003)CrossRefGoogle Scholar
  65. 65.
    M.R. de Jong, J. Huskens, D.N. Reinhoudt, Chem. Eur. J. 7, 4164–4170 (2001)CrossRefGoogle Scholar
  66. 66.
    A. Fragoso, J. Caballero, E. Almirall, R. Villalonga, R. Cao, Langmuir 18, 5051–5054 (2002)CrossRefGoogle Scholar
  67. 67.
    C.A. Nijhuis, J. Huskens, D.N. Reinhoudt, J. Am. Chem. Soc. 126, 12266–12267 (2004)CrossRefGoogle Scholar
  68. 68.
    C.A. Nijhuis, K.A. Dolatowska, B.J. Ravoo, J. Huskens, D.N. Reinhoudt, Chem. Eur. J. 13, 69–80 (2007)CrossRefGoogle Scholar
  69. 69.
    X.Y. Ling, D.N. Reinhoudt, J. Huskens, Chem. Mater. 20, 3574–3578 (2008)CrossRefGoogle Scholar
  70. 70.
    M.J.W. Ludden, X. Li, J. Greve, A. van Amerongen, M. Escalante, V. Subramaniam, D.N. Reinhoudt, J. Huskens, J. Am. Chem. Soc. 130, 6964–6973 (2008)CrossRefGoogle Scholar
  71. 71.
    A. Mulder, S. Onclin, M. Peter, J.P. Hoogenboom, H. Beijleveld, J. ter Maat, M.F. Garcia-Parajo, B.J. Ravoo, J. Huskens, N.F. van Hulst, D.N. Reinhoudt, Small 1, 242–253 (2005)CrossRefGoogle Scholar
  72. 72.
    O. Crespo-Biel, B. Dordi, P. Maury, M. Peter, D.N. Reinhoudt, J. Huskens, Chem. Mater. 18, 2545–2551 (2006)CrossRefGoogle Scholar
  73. 73.
    P. Maury, M. Escalante, M. Peter, D.N. Reinhoudt, V. Subramaniam, J. Huskens, Small 3, 1584–1592 (2007)CrossRefGoogle Scholar
  74. 74.
    P. Maury, M. Peter, O. Crespo-Biel, X.Y. Ling, D.N. Reinhoudt, J. Huskens, Nanotechnology 18, 044007Google Scholar
  75. 75.
    A. Mulder, T. Auletta, A. Sartori, S. Del Ciotto, A. Casnati, R. Ungaro, J. Huskens, D.N. Reinhoudt, Am. Chem. Soc. 126, 6627–6636 (2004)CrossRefGoogle Scholar
  76. 76.
    O. Crespo-Biel, C.W. Lim, B.J. Ravoo, D.N. Reinhoudt, J. Huskens, J. Am. Chem. Soc. 128, 17024–17032 (2006)CrossRefGoogle Scholar
  77. 77.
    C.W. Lim, O. Crespo-Biel, M.C.A. Stuart, D.N. Reinhoudt, J. Huskens, B.J. Ravoo, Proc. Natl. Acad. Sci. USA 104, 6986–6991 (2007)CrossRefGoogle Scholar
  78. 78.
    M.J.W. Ludden, M. Peter, D.N. Reinhoudt, J. Huskens, Small 2, 1192–1202 (2006)CrossRefGoogle Scholar
  79. 79.
    S. Onclin, J. Huskens, B.J. Ravoo, D.N. Reinhoudt, Small 1, 852–857 (2005)CrossRefGoogle Scholar
  80. 80.
    M.J.W. Ludden, A. Mulder, R. Tampe, D.N. Reinhoudt, J. Huskens, Angew. Chem. Int. Ed. 46, 4104–4107 (2007)CrossRefGoogle Scholar
  81. 81.
    M.L.W. Ludden, A. Mulder, K. Schulze, V. Subramaniam, R. Tampe, J. Huskens, Chem. Eur. J. 14, 2044–2051 (2008)CrossRefGoogle Scholar
  82. 82.
    H. Xu, R. Hong, T.X. Lu, O. Uzun, V.M. Rotello, J. Am. Chem. Soc. 128, 3162–3163 (2006)CrossRefGoogle Scholar
  83. 83.
    K. Kobayashi, N. Tonegawa, S. Fujii, J. Hikida, H. Nozoye, K. Tsutsui, Y. Wada, M. Chikira, M. Haga, Langmuir 24, 13203–13211 (2008)CrossRefGoogle Scholar
  84. 84.
    T. Hatano, A. Ikeda, T. Akiyama, S. Yamada, M. Sano, Y. Kanekiyo, S. Shinkai, J. Chem. Soc., Perkin Trans. 2 5, 909–912 (2000)Google Scholar
  85. 85.
    A. Langner, S.L. Tait, N. Lin, R. Chandrasekar, M. Ruben, K. Kern, Angew. Chem. Int. Ed. 47, 8835–8838 (2008)CrossRefGoogle Scholar
  86. 86.
    F. Tancini, D. Genovese, M. Montalti, L. Cristofolini, L. Nas, L. Prodi, E. Dalcanale, J. Am. Chem. Soc. 132, 4781–4789 (2010)CrossRefGoogle Scholar
  87. 87.
    M.E. Canas-Ventura, K. Ait-Mansour, P. Ruffieux, R. Rieger, K. Mullen, H. Brune, R. Fasel, ACS Nano 5, 457–469 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Stoddart Mechanostereochemistry Group, Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations