Advertisement

A Bayesian Hierarchical Space-Time Model for Significant Wave Height

  • Erik Vanem
Chapter
Part of the Ocean Engineering & Oceanography book series (OEO, volume 2)

Abstract

This chapter presents a Bayesian hierarchical space-time model for significant wave height. This type of models was selected based on a comprehensive literature survey and the framework allows modeling of complex dependence structures in space and time. Such models may incorporate physical features and prior knowledge, yet remain intuitive and easily interpreted. The model presented in this chapter has been fitted to significant wave height data with different temporal resolutions for an area in the North Atlantic Ocean. The various components of the model will be outlined, and the results from applying the model on monthly and daily data, as well as monthly maximum data, will be discussed. A few different model alternatives have been investigated and long-term trends in the data have been identified with all model alternatives. Overall, the identified trends are in reasonable agreement and also agree fairly well with previous studies.

Keywords

Credible Interval Significant Wave Height Noise Term Marginal Posterior Distribution Integrate Nest Laplace Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aggoun, L.: Kalman filtering of a space-time markov random field. Math. Comput. Model. 36, 1193–1209 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Babanin, A.V., Chalikov, D., Young, I., Savelyev, I.: Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J. Fluid Mech. 644, 433–463 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca Raton (2004)zbMATHGoogle Scholar
  5. 5.
    Caires, S., Sterl, A.: 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Clim. 18, 1032–1048 (2005)CrossRefGoogle Scholar
  6. 6.
    Caires, S., Sterl, A.: A new nonparametric method to correct model data: application to significant wave height from ERA-40 re-analysis. J. Atmospheric Ocean. Technol. 22, 443–459 (2005)CrossRefGoogle Scholar
  7. 7.
    Caires, S., Swail, V.: Global wave climate trend and variability analysis. In: Preprints of 8th International Workshop on Wave Hindcasting and Forecasting (2004)Google Scholar
  8. 8.
    Caires, S., Swail, V.R., Wang, X.L.: Projection and analysis of extreme wave climate. J. Clim. 19, 5581–5605 (2006)CrossRefGoogle Scholar
  9. 9.
    Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–533 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grabemann, I., Weisse, R.: Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn. 58, 199–212 (2008)CrossRefGoogle Scholar
  11. 11.
    Guedes Soares, C., Ferreira, A., Cunha, C.: Linear models of the time series of significant wave height on the Southwest Coast of Portugal. Coast. Eng. 29, 149–167 (1996)CrossRefGoogle Scholar
  12. 12.
    Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  13. 13.
    Konig, T., Lehner, S., Schulz-Stellenfleth, J.: Global analysis of a 2 year ERS-2 wavemode dataset over the oceans. In: Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2007). IEEE International (2007)Google Scholar
  14. 14.
    Kushnir, Y., Cardone, V., Greenwood, J., Cane, M.: The recent increase in north atlantic wave heights. J. Clim. 10, 2107–2113 (1997)CrossRefGoogle Scholar
  15. 15.
    Lim, J., Wang, X., Sherman, M.: An adjustment for edge effects using an augmented neighborhood model in the spatial auto-logistic model. Comput. Stat. Data Anal. 51, 3679–3688 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Meinhold, R.J., Singpurwalla, N.D.: Understanding the kalman filter. Am. Statist. 37, 123–127 (1983)Google Scholar
  17. 17.
    Natvig, B., Tvete, I.F.: Bayesian hierarchical space-time modeling of earthquake data. Methodol. Comput. Appl. Probab. 9, 89–114 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Robert, C.P., Casella, G.: Monte Carlo statistical methods, 2nd edn. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schwarz, G.: Estimating the dimension of a model. Annal. Stat. 6, 461–464 (1978)CrossRefzbMATHGoogle Scholar
  21. 21.
    Scotto, M., Guedes Soares, C.: Modelling the long-term time series of significant wave height with non-linear threshold models. Coast. Eng. 40, 313–327 (2000)CrossRefGoogle Scholar
  22. 22.
    Smith, R.L.: Environmental statistics. University of North Carolina (2001). http://www.stat.unc.edu/postscript/rs/envnotes.pdf. Accessed 21 Oct 2010
  23. 23.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64, 583–639 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Sterl, A., Caires, S.: Climatology, variability and extrema of ocean waves: the web-based KNMI/ERA-40 wave atlas. Int. J. Climatol. 25, 963–977 (2005)CrossRefGoogle Scholar
  25. 25.
    Toffoli, A., Babanin, A., Onorato, M., Waseda, T.: Maximum steepness of oceanic waves: field and laboratory experiments. Geophys. Res. Lett. 37, L05, 603 (2010)Google Scholar
  26. 26.
    Tvete, I.F., Natvig, B.: A comparison of an analytical approach and a standard simulation approach in Bayesian forecasting applied to monthly data from insurance of companies. Methodol. Comput. Appl. Probab. 4, 95–113 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., Da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., Van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm E. Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.F., Morcrette, J.J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Vitebro, P., Woolen, J.: The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005)Google Scholar
  28. 28.
    Vanem, E.: Long-term time-dependent stochastic modelling of extreme waves. Stoch. Env. Res. Risk Assess. 25, 185–209 (2011)CrossRefGoogle Scholar
  29. 29.
    Vanem, E., Huseby, A.B., Natvig, B.: A Bayesian-hierarchical space-time model for significant wave height data. In: Proceedings of the 30th International Conference on Ocean, Offshore Mechanics and Arctic Engineering (OMAE 2011). American Society of Mechanical Engineers (ASME) (2011)Google Scholar
  30. 30.
    Vanem, E., Huseby, A.B., Natvig, B.: A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic. Stoch. Env. Res. Risk Assess. 26, 609–632 (2012)CrossRefGoogle Scholar
  31. 31.
    Vanem, E., Huseby, A.B., Natvig, B.: A stochastic model in space and time for monthly maximum significant wave height. In: P. Abrahamsen, R. Haugen, O. Kolbjørnsen (eds.) Geostatistics Oslo 2012, pp. 505–517. Springer, Heidelberg (2012)Google Scholar
  32. 32.
    Vanem, E., Huseby, A.B., Natvig, B.: Bayesian hierarchical spatio-temporal modelling of trends and future projections in the ocean wave climate with a CO\(_2\) regression component. Environ. Ecol. Stat. (in press) (2013)Google Scholar
  33. 33.
    Vanem, E., Walker, S.E.: Identifying trends in the ocean wave climate by time series analyses of significant wave height data. Ocean Eng. 61, 148–160 (2012)CrossRefGoogle Scholar
  34. 34.
    Wang, X.J., Zwiers, F.W., Swail, V.R.: North Atlantic ocean wave climate change scenarios for the twenty-first century. J. Clim. 17, 2368–2383 (2004)CrossRefGoogle Scholar
  35. 35.
    Wang, X.L., Swail, V.R.: Climate change signal and uncertainty in projections of ocean wave heights. Clim. Dyn. 26, 109–126 (2006)CrossRefGoogle Scholar
  36. 36.
    West, M., Harrison, J.: Bayesian forecasting and dynamic models, 2nd edn. Springer, Heidelberg (1997)Google Scholar
  37. 37.
    Wikle, C.K.: Hierarchical models in environmental science. Int. Stat. Rev. 71, 181–199 (2003)CrossRefzbMATHGoogle Scholar
  38. 38.
    Wikle, C.K., Berliner, L.M., Cressie, N.: Hierarchical Bayesian space-time models. Environ. Ecol. Stat. 5, 117–154 (1998)CrossRefGoogle Scholar
  39. 39.
    Young, I., Zieger, S., Babanin, A.: Global trends in wind speed and wave height. Science 332, 451–455 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of OsloOsloNorway

Personalised recommendations