Skip to main content

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 2))

  • 1414 Accesses

Abstract

This chapter gives an introduction to the problem area and motivates the research into stochastic models of ocean waves. The importance of knowledge about the environmental operating conditions for ships and other marine structures is emphasized. Furthermore, it is argued that climate change may have an effect on future ocean wave climate and that this needs to be taken into account already in the design process. Integrated sea state parameters such as significant wave height are briefly introduced as a sensible way of describing sea states and various sources of wave are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    website: http://www.ipcc.ch/

  2. 2.

    The words very likely are defined to mean with a 90 % probability of being true.

  3. 3.

    parts per million.

  4. 4.

    About 20 % chance of being correct.

  5. 5.

    Often attributed to the physicist Niels Boer, but the actual origin of this quote is unknown.

References

  1. Arrhenius, S.: On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. J. Sci. 41, 237–276 (1896)

    Article  Google Scholar 

  2. Bernardo, J.M., Smith, A.F.: Bayesian theory. Wiley, Chichester (1994)

    Google Scholar 

  3. Bitner-Gregersen, E.M., Eide, L.I., Toffoli, A., Eide, M.: White paper on effect of climate change on marine structure design. Technical Report No UCTNO911 2008–1014, Det Norske, Veritas (2009)

    Google Scholar 

  4. Bitner-Gregersen, E.M., Hørte, T., Skjong, R.: Potential impact of climate change on tanker design. In: Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2011). American Society of Mechanical Engineers (ASME) (2011)

    Google Scholar 

  5. Callendar, G.S.: The artificial production of carbon dioxide and its influence on temperature. Q. J. R. Meteorol. Soc. 64, 223–240 (1938)

    Google Scholar 

  6. Collins, M., Chandler, R.E., Cox, P.M., Huthnance, J.M., Rougier, J.: Quantifying future climate change. Nat. clim. change 2, 403–409 (2012)

    Article  Google Scholar 

  7. Corbella, S., Stretch, D.D.: Multivariate return periods of sea storms for coastal erosion risk assessment. Nat. Hazards Earth Syst. Sci. 12, 2699–2708 (2012)

    Article  Google Scholar 

  8. Cressie, N., Wikle, C.K.: Statistics for spatio-temporal data. Wiley, Hoboken (2011)

    Google Scholar 

  9. Dessler, A.E.: Introduction to modern climate change. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  10. Grabemann, I., Weisse, R.: Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn. 58, 199–212 (2008)

    Article  Google Scholar 

  11. Group, T.W., Cavaleri, L., Alves, J.H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T., Hwang, P., Janssen, P., Janssen, T., Lavrenov, I., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W., Sheremet, A., McKee Smith, J., Tolman, H., van Vledder, G., Wolf, J., Young, I.: Wave modelling—the state of the art. Prog. Oceanogr. 75, 603–674 (2007)

    Article  Google Scholar 

  12. Haver, S., Winterstein, S.: Environmental contour lines: a method for estimating long term extremes by a short term anaysis. Trans. Soc. Naval Archit. Marine Eng. 116, 116–127 (2009)

    Google Scholar 

  13. IPCC: Climate Change: The IPCC scientific assessment. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  14. IPCC: Climate Change 1995: The science of climate change. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  15. IPCC: Climate Change 2001: The scientific basis. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  16. IPCC: Climate Change 2007: The physical sciences basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  17. IPCC: Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  18. Longuet-Higgins, M.S.: On the statistical distribution of the height of sea waves. J. Mar. Res. 11, 245–266 (1952)

    Google Scholar 

  19. Meinshause, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.F., Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M., van Vuuren, D.P.P.: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011)

    Article  Google Scholar 

  20. Mínguez, R., Tomás, A., Méndez, F.J., Medina, R.: Mixed extreme wave climate model for reanalysis databases. Stoch. Env. Res. Risk Assess. 27, 757–768 (2013)

    Article  Google Scholar 

  21. Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., Wilbanks, T.J.: The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010)

    Article  Google Scholar 

  22. Nakićenović, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grügler, A., Jung, T.Y., Kram, T., La Rovere, E.L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., Dadi, Z.: Emissions scenarios. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  23. Natvig, B., Tvete, I.F.: Bayesian hierarchical space-time modeling of earthquake data. Methodol. Comput. Appl. Probab. 9, 89–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prigogine, I.: The end of certainty. Free Press, New York (1997)

    Google Scholar 

  25. Smith, R.L.: Environmental statistics. University of North Carolina (2001). http://www.stat.unc.edu/postscript/rs/envnotes.pdf. Accessed 21 Oct 2010

  26. Stephenson, D.B., Collins, M., Rougier, J.C., Chandler, R.E.: Statistical problems in the probabilistic prediction of climate change. Environmetrics 23, 364–372 (2012)

    Article  MathSciNet  Google Scholar 

  27. von Storch, H., Zwiers, F.W.: Statistical analysis in climate research. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  28. Talley, L.D., Pickard, G.L., Emery, W.J., Swift, J.H.: Descriptive physical oceanography an introduction, 6th edn. Elsevier, Boston (2011)

    Google Scholar 

  29. Tebaldi, C., Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A 365, 2053–2075 (2007)

    Article  MathSciNet  Google Scholar 

  30. Vanem, E., Walker, S.E.: Identifying trends in the ocean wave climate by time series analyses of significant wave height data. Ocean Eng. 61, 148–160 (2012)

    Article  Google Scholar 

  31. van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K.: The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011)

    Google Scholar 

  32. West, M., Harrison, J.: Bayesian forecasting and dynamic models, 2nd edn. Springer, Heidelberg (1997)

    Google Scholar 

  33. Wikle, C.K.: Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84, 1382–1392 (2003)

    Article  Google Scholar 

  34. Wikle, C.K.: Hierarchical models in environmental science. Int. Stat. Rev. 71, 181–199 (2003)

    Article  MATH  Google Scholar 

  35. Wikle, C.K., Berliner, L.M., Cressie, N.: Hierarchical Bayesian space-time models. Environ. Ecol. Stat. 5, 117–154 (1998)

    Article  Google Scholar 

  36. Wikle, C.K., Milliff, R.F., Nychka, D., Berliner, L.M.: Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds. J. Am. Stat. Assoc. 96, 382–397 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Vanem .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vanem, E. (2013). Introduction and Background. In: Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height. Ocean Engineering & Oceanography, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30253-4_1

Download citation

Publish with us

Policies and ethics