Advertisement

Magnonics pp 71-81 | Cite as

Photo-Magnonics

  • Benjamin Lenk
  • Fabian Garbs
  • Henning Ulrichs
  • Nils Abeling
  • Markus Münzenberg
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 125)

Abstract

In the framework of magnonics, all-optical femtosecond laser experiments are used to study spin waves and their relaxation paths. Magnonic crystal structures based on antidots allow the control over the spin-wave modes. In these two-dimensional magnetic metamaterials with periodicities in the wave-length range of dipolar spin waves, the spin-wave bands and dispersion are modified. Hence, a specific selection of spin-wave modes excited by laser pulses is possible. Different to photonics, the modes depend strongly on the strength of the magneto-static potential at around each antidot site – the dipolar field. While this may lead to a mode localization, also for filling fractions around or below 10 %, Bloch states are found in low damping ferromagnetic metals. In this chapter, an overview of these mechanisms is given and the connection to spin-wave band spectra calculated from an analytical model is established. Namely, the plane-wave method yields flattened bands as well as band gaps at the antidot lattice Brillouin zone boundary.

Keywords

Spin Wave Pump Pulse Probe Pulse Continuous Film Brillouin Zone Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Jakob Walowski for the contribution of the experiment’s schematic shown in Fig. 6.1(a) and Georg Herink for careful proof-reading of the manuscript.

References

  1. 1.
    B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, Phys. Rep. 507(4–5), 107 (2011). doi: 10.1016/j.physrep.2011.06.003 CrossRefGoogle Scholar
  2. 2.
    V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D, Appl. Phys. 43(26), 260301 (2010). doi: 10.1088/0022-3727/43/26/260301 CrossRefGoogle Scholar
  3. 3.
    J. Podbielski, F. Giesen, D. Grundler, Phys. Rev. Lett. 96(16), 167207 (2006). doi: 10.1103/PhysRevLett.96.167207 CrossRefGoogle Scholar
  4. 4.
    S. Neusser, G. Duerr, H. Bauer, S. Tacchi, M. Madami, G. Woltersdorf, G. Gubbiotti, C. Back, D. Grundler, Phys. Rev. Lett. 105(6), 067208 (2010). doi: 10.1103/PhysRevLett.105.067208 CrossRefGoogle Scholar
  5. 5.
    S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G. Carlotti, L. Giovannini, R. Zivieri, F. Nizzoli, S. Jain, A. Adeyeye, N. Singh, Phys. Rev. Lett. 107(12), 127204 (2011). doi: 10.1103/PhysRevLett.107.127204 CrossRefGoogle Scholar
  6. 6.
    C.W. Sandweg, M.B. Jungfleisch, V.I. Vasyuchka, A.A. Serga, P. Clausen, H. Schultheiss, B. Hillebrands, A. Kreisel, P. Kopietz, Rev. Sci. Instrum. 81(7), 73902 (2010). doi: 10.1063/1.3454918 CrossRefGoogle Scholar
  7. 7.
    M. Djordjevic, M. Münzenberg, Phys. Rev. B 75(1), 12404 (2007). doi: 10.1103/PhysRevB.75.012404 CrossRefGoogle Scholar
  8. 8.
    B. Lenk, G. Eilers, J. Hamrle, M. Münzenberg, Phys. Rev. B 82(13), 134443 (2010). doi: 10.1103/PhysRevB.82.134443 CrossRefGoogle Scholar
  9. 9.
    R.W. Damon, J.R. Eshbach, J. Appl. Phys. 31(5), S104 (1960). doi: 10.1063/1.1984622 CrossRefGoogle Scholar
  10. 10.
    B.A. Kalinikos, A.N. Slavin, J. Phys. C 19(35), 7013 (1986). http://stacks.iop.org/0022-3719/19/7013 CrossRefGoogle Scholar
  11. 11.
    C. Herring, C. Kittel, Phys. Rev. 81(5), 869 (1951). doi: 10.1103/PhysRev.81.869 CrossRefGoogle Scholar
  12. 12.
    G. Eilers, H. Ulrichs, M. Münzenberg, A. Thomas, K. Thiel, M. Seibt, J. Appl. Phys. 105(7), 073701 (2009). doi: 10.1063/1.3100044 CrossRefGoogle Scholar
  13. 13.
    M. Djordjevic, G. Eilers, A. Parge, M. Münzenberg, J.S. Moodera, J. Appl. Phys. 99(8), 08F308 (2006). doi: 10.1063/1.2177141 CrossRefGoogle Scholar
  14. 14.
    U. Atxitia, O. Chubykalo-Fesenko, Phys. Rev. B 81(17), 174401 (2010). doi: 10.1103/PhysRevB.81.174401 CrossRefGoogle Scholar
  15. 15.
    E. Beaurepaire, J.C. Merle, A. Daunois, J.Y. Bigot, Phys. Rev. Lett. 76(22), 4250 (1996). doi: 10.1103/PhysRevLett.76.4250 CrossRefGoogle Scholar
  16. 16.
    H. Ulrichs, B. Lenk, M. Münzenberg, Appl. Phys. Lett. 97(9), 092506 (2010). doi: 10.1063/1.3483136 CrossRefGoogle Scholar
  17. 17.
    J. Vasseur, L. Dobrzynski, B. Djafari-Rouhani, H. Puszkarski, Phys. Rev. B 54(2), 1043 (1996). doi: 10.1103/PhysRevB.54.1043 CrossRefGoogle Scholar
  18. 18.
    M. Krawczyk, H. Puszkarski, Phys. Rev. B 77(5), 54413 (2008). doi: 10.1103/PhysRevB.77.054437 CrossRefGoogle Scholar
  19. 19.
    M. Hurben, J. Magn. Magn. Mater. 139(3), 263 (1995). doi: 10.1016/0304-8853(95)90006-3 CrossRefGoogle Scholar
  20. 20.
    M.J. Pechan, C. Yu, R.L. Compton, J.P. Park, P.A. Crowell, J. Appl. Phys. 97(10), 10J903 (2005). doi: 10.1063/1.1857412 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benjamin Lenk
    • 1
  • Fabian Garbs
    • 1
  • Henning Ulrichs
    • 1
  • Nils Abeling
    • 1
  • Markus Münzenberg
    • 1
  1. 1.Institute of PhysicsGeorg-August-University of GöttingenGöttingenGermany

Personalised recommendations