Advertisement

Magnonics pp 59-70 | Cite as

The Role of Angular Momentum in Ultrafast Magnetization Dynamics

  • Andrei Kirilyuk
  • Alexey V. Kimel
  • Theo Rasing
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 125)

Abstract

Many aspects of magnetization dynamics are related to the fact that a certain amount of angular momentum is associated with magnetic moments. Here the dynamics of angular momentum is considered in ferrimagnetic rare-earth–transition-metal alloys that consist of two antiferromagnetically coupled sublattices, where both magnetization and angular momenta are temperature dependent. For certain compositions, such ferrimagnets can exhibit a magnetization compensation temperature T M where the magnetizations of the sublattices cancel each other, and similarly, an angular momentum compensation temperature T A where the net angular momentum vanishes. At the latter point, the frequency of the homogeneous spin precession diverges. As a consequence, ultrafast heating of a ferrimagnet across its compensation points may result in subpicosecond magnetization reversal. Moreover, the magnetization can be manipulated and even reversed by a single 40 femtosecond laser pulse, without any applied magnetic field. This optically induced ultrafast magnetization reversal is the combined result of laser heating of the magnetic system and the exchange interaction between the sublattices. This novel reversal pathway is shown to crucially depend on the net angular momentum, reflecting the balance of the two oppositely magnetized sublattices.

Keywords

Angular Momentum Magnetization Reversal Magnetization Dynamic Itinerant Ferromagnet Femtosecond Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research has received funding from Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Dutch Nanotechnology initiative NanoNed, and EC FP7 contributions under grants NMP3-SL-2008-214469 (UltraMagnetron) and N 214810 (FANTOMAS).

References

  1. 1.
    A. Einstein, W. de Haas, Verh. Dtsch. Phys. Ges. 17, 152 (1915) Google Scholar
  2. 2.
    S.J. Barnett, Phys. Rev. 6, 239 (1915) CrossRefGoogle Scholar
  3. 3.
    L. Landau, E. Lifshitz, Phys. Z. Union 8, 153 (1935) Google Scholar
  4. 4.
    E. Beaurepaire, J.C. Merle, A. Daunois, J.Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996) CrossRefGoogle Scholar
  5. 5.
    A. Kirilyuk, A.V. Kimel, T. Rasing, Rev. Mod. Phys. 82, 2731 (2010) CrossRefGoogle Scholar
  6. 6.
    B. Koopmans, G. Malinowski, F.D. Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, M. Aeschlimann, Nat. Mater. 9, 259 (2010) Google Scholar
  7. 7.
    M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010) CrossRefGoogle Scholar
  8. 8.
    G.P. Zhang, T.F. George, Phys. Rev. B 78, 052407 (2008) CrossRefGoogle Scholar
  9. 9.
    I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H.A. Dürr, T.A. Ostler, J. Barker, R.F.L. Evans, R.W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, A.V. Kimel, Nature 472, 205 (2011) CrossRefGoogle Scholar
  10. 10.
    C.D. Stanciu, A.V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, Phys. Rev. B 73, 220402(R) (2006) CrossRefGoogle Scholar
  11. 11.
    A.V. Kimel, B.A. Ivanov, R.V. Pisarev, P.A. Usachev, A. Kirilyuk, T. Rasing, Nature Physics (2009) Google Scholar
  12. 12.
    R.K. Wangsness, Phys. Rev. 91, 1085 (1953) CrossRefGoogle Scholar
  13. 13.
    T. Kobayashi, H. Hayashi, Y. Fujiwara, S. Shiomi, IEEE Trans. Magn. 41, 2848 (2005) CrossRefGoogle Scholar
  14. 14.
    H.W. Schumacher, C. Chappert, P. Crozat, R.C. Sousa, P.P. Freitas, J. Miltat, J. Fassbender, B. Hillebrands, Phys. Rev. Lett. 88, 227201 (2002) CrossRefGoogle Scholar
  15. 15.
    C. Kittel, Phys. Rev. 76, 743 (1949) CrossRefGoogle Scholar
  16. 16.
    M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge University Press, Cambridge, 1995) CrossRefGoogle Scholar
  17. 17.
    S. Bhagat, P. Lubitz, Phys. Rev. B 10, 179 (1974) CrossRefGoogle Scholar
  18. 18.
    J. Kaplan, C. Kittel, J. Chem. Phys. 21, 760 (1953) CrossRefGoogle Scholar
  19. 19.
    R.K. Wangsness, Phys. Rev. 97, 831 (1955) CrossRefGoogle Scholar
  20. 20.
    T. Silva, J. Nibarger, B. Rippard, B. Stamps, APS Meet. Mar., B23011 (2004) Google Scholar
  21. 21.
    Y. Li, K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992) CrossRefGoogle Scholar
  22. 22.
    A. Mekonnen, M. Cormier, A.V. Kimel, A. Kirilyuk, A. Hrabec, L. Ranno, T. Rasing, Phys. Rev. Lett. 107, 117202 (2011) CrossRefGoogle Scholar
  23. 23.
    A.E. Berkowitz, W.H. Meiklejohn, IEEE Trans. Magn. 11, 996 (1975) CrossRefGoogle Scholar
  24. 24.
    M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, G. Ju, Y.T. Hsia, M.F. Erden, IEEE Proc. 96, 1810 (2008) CrossRefGoogle Scholar
  25. 25.
    C. Stanciu, A. Tsukamoto, A.V. Kimel, F. Hansteen, A. Kirilyuk, A. Itoh, T. Rasing, Phys. Rev. Lett. 99, 217204 (2007) CrossRefGoogle Scholar
  26. 26.
    M. Aeschlimann, A. Vaterlaus, M. Lutz, M. Stampanoni, F. Meier, H.C. Siegmann, S. Klahn, P. Hansen, Appl. Phys. Lett. 59, 2189 (1991) CrossRefGoogle Scholar
  27. 27.
    M. Aeschlimann, A. Vaterlaus, M. Lutz, M. Stampanoni, F. Meier, J. Appl. Phys. 67, 4438 (1990) CrossRefGoogle Scholar
  28. 28.
    J. Hohlfeld, T. Gerrits, M. Bilderbeek, T. Rasing, H. Awano, N. Ohta, Phys. Rev. B 65, 012413 (2001) CrossRefGoogle Scholar
  29. 29.
    A. Vaterlaus, T. Beutler, F. Meier, Phys. Rev. Lett. 67, 3314 (1991) CrossRefGoogle Scholar
  30. 30.
    M. Binder, A. Weber, O. Mosendz, G. Woltersdorf, M. Izquierdo, I. Neudecker, J.R. Dahn, T.D. Hatchard, J.U. Thiele, C.H. Back, M.R. Scheinfein, Phys. Rev. B 74, 134404 (2006) CrossRefGoogle Scholar
  31. 31.
    U. Bovensiepen, Appl. Phys. A 82, 395 (2006) CrossRefGoogle Scholar
  32. 32.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, Phys. Rev. Lett. 58, 737 (1987) CrossRefGoogle Scholar
  33. 33.
    J. Stöhr, Y. Wu, B.D. Hermsmeir, M.G. Samant, G.R. Harp, S. Koranda, D. Dunham, B.P. Tonner, Science 259, 658 (1993) Google Scholar
  34. 34.
    C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, E.F. Aziz, M. Wietstruk, H.A. Dürr, W. Eberhardt, Nat. Mater. 6, 740 (2007) CrossRefGoogle Scholar
  35. 35.
    N. Kazantseva, U. Nowak, R.W. Chantrell, J. Hohlfeld, A. Rebei, Europhys. Lett. 81, 27004 (2008) CrossRefGoogle Scholar
  36. 36.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974) Google Scholar
  37. 37.
    J. Mentink, J. Hellsvik, D.V. Afanasiev, B.A. Ivanov, A. Kirilyuk, A.V. Kimel, O. Eriksson, M.I. Katsnelson, Th. Rasing, Phys. Rev. Lett. 107 (2011). doi: 10.1103/PhysRevLett.108.057202
  38. 38.
    B. Koopmans, J.J. Ruigrok, F.D. Longa, W.J. de Jonge, Phys. Rev. Lett. 95, 267207 (2005) CrossRefGoogle Scholar
  39. 39.
    U. Atxitia, O. Chubykalo-Fesenko, N. Kazantseva, D. Hinzke, U. Nowak, R.W. Chantrell, Appl. Phys. Lett. 91, 232507 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrei Kirilyuk
    • 1
  • Alexey V. Kimel
    • 1
  • Theo Rasing
    • 1
  1. 1.Institute for Molecules and MaterialsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations