Magnonics pp 29-38 | Cite as

Features of Chaotic Spin Waves in Magnetic Film Feedback Rings

  • Aaron M. Hagerstrom
  • Mingzhong Wu
Part of the Topics in Applied Physics book series (TAP, volume 125)


The features of chaotic spin waves in magnetic film feedback rings were studied. Experiments made use of an yttrium iron garnet thin film-based active feedback ring. The excitation of chaotic spin waves relied on the three-wave interactions of short- and long-wavelength backward volume spin waves. The features of the chaotic spin waves were evaluated through the calculation of the ambiguity functions (AFs) of the measured signals. The calculation results indicate that one can tune the AF properties of the chaotic spin waves via the ring gain. In particular, an increase in the ring gain leads to the suppression of side lobes in the AF diagram, both in number and amplitude, but produces negligible effects on the main AF peak. The results on cross ambiguity functions are consistent with the chaotic nature of the chaotic spin waves. These results indicate the potential of magnetic film-based chaotic oscillators for chaotic radar applications.


Spin Wave Doppler Frequency Side Lobe Signal Duration Yttrium Iron Garnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the U. S. National Science Foundation (DMR-0906489) and the U. S. Army Research Office (W911NF-11-C-0075).


  1. 1.
    V. Venkatasubramanian, H. Leung, IEEE Signal Process. Lett. 12, 528 (2005) CrossRefGoogle Scholar
  2. 2.
    Z. Liu, X. Zhu, W. Hu, F. Jiang, Int. J. Bifurc. Chaos 17, 1735 (2007) CrossRefGoogle Scholar
  3. 3.
    T.L. Carroll, Chaos 17, 033103 (2007) CrossRefGoogle Scholar
  4. 4.
    T.L. Carroll, IET Radar Sonar Navig. 2, 256 (2008) CrossRefGoogle Scholar
  5. 5.
    A.S. Dmitriev, B.Y. Kyarginsky, A.I. Panas, S.O. Starkov, Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 1495 (2003) CrossRefGoogle Scholar
  6. 6.
    A.S. Dmitriev, B.Y. Kyarginskii, A.I. Panas, D.Y. Puzikov, S.O. Starkov, Tech. Phys. Lett. 29, 72 (2003) CrossRefGoogle Scholar
  7. 7.
    V.E. Demidov, N.G. Kovshikov, Tech. Phys. Lett. 24(4), 274 (1998) CrossRefGoogle Scholar
  8. 8.
    V.E. Demidov, N.G. Kovshikov, Tech. Phys. Lett. 24, 647 (1998) CrossRefGoogle Scholar
  9. 9.
    M. Wu, B.A. Kalinikos, C.E. Patton, Phys. Rev. Lett. 95, 237202 (2005) CrossRefGoogle Scholar
  10. 10.
    A.M. Hagerstrom, W. Tong, M. Wu, B.A. Kalinikos, R. Eykholt, Phys. Rev. Lett. 102, 207202 (2009) CrossRefGoogle Scholar
  11. 11.
    M. Wu, A.M. Hagerstrom, R. Eykholt, A. Kondrashov, B.A. Kalinikos, Phys. Rev. Lett. 102, 237203 (2009) CrossRefGoogle Scholar
  12. 12.
    A.M. Hagerstrom, M. Wu, R. Eykholt, B.A. Kalinikos, Phys. Rev. B 83, 104402 (2011) CrossRefGoogle Scholar
  13. 13.
    P. Kabos, V.S. Stalmachov, Magnetostatic Waves and Their Applications (Chapman & Hall, London, 1994) CrossRefGoogle Scholar
  14. 14.
    D.D. Stancil, A. Prabhakar, Spin Waves – Theory and Applications (Springer, New York, 2009) Google Scholar
  15. 15.
    M. Wu, Nonlinear spin waves in magnetic film feedback rings, in Solid State Physics, vol. 62, ed. by R. Camley, R. Stamps (Academic Press, Burlington, 2011), pp. 163–224 Google Scholar
  16. 16.
    C.E. Cook, M. Bernfeld, Radar Signals: An Introduction to Theory and Application (Artech House, Norwood, 1993) Google Scholar
  17. 17.
    F. Lin, J. Liu, IEEE J. Quantum Electron. 40, 1732 (2004) CrossRefGoogle Scholar
  18. 18.
    A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsColorado State UniversityFort CollinsUSA

Personalised recommendations