Magnonics pp 223-242 | Cite as

Normal Mode Theory for Magnonic Crystal Waveguide

Chapter
Part of the Topics in Applied Physics book series (TAP, volume 125)

Abstract

A general theory for dipole–exchange spin-wave spectrum of magnonic crystal waveguide has been developed. Magnonic crystal waveguide is assumed to be a thin-film ferromagnetic waveguiding medium with periodical modulation of the magnetic parameters along the spin-wave propagation direction. The periodical variation of the magnetic parameters is taken into account in the framework of the Floquet theorem for a differential equation with periodic coefficients. The spin-wave modes’ approach, together with the method of tensorial Green’s functions, is used to describe propagating spin waves. The exact dispersion relation is obtained in the form of an infinite determinant, which can be easily reduced to a finite one for each particular problem under consideration.

Keywords

Spin Wave Effective Magnetic Field Space Harmonic Bias Magnetic Field Variable Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.A. Nikitov, P. Tailhades, C.S. Tsai, Spin waves in periodic magnetic structures – magnonic crystals. J. Magn. Magn. Mater. 236(3), 320–330 (2001) CrossRefGoogle Scholar
  2. 2.
    H. Puszkarski, M. Krawczyk, Magnonic crystals – the magnetic counterpart of photonic crystals. Solid State Phenom. 94, 125–134 (2003) CrossRefGoogle Scholar
  3. 3.
    V.E. Demidov, S.O. Demokritov, K. Rott, P. Krzysteczko, G. Reiss, Linear and nonlinear spin-wave dynamics in macro- and microscopic magnetic confined structures. J. Phys. D, Appl. Phys. 41, 164012 (2008) CrossRefGoogle Scholar
  4. 4.
    N.Y. Grigorieva, B.A. Kalinikos, M.P. Kostylev, A.A. Stashkevich, Spin waves in multilayered and patterned magnetic structures, in Handbook of Artificial Materials, Vol. I: Theory and Phenomena of Artificial Materials, ed. by F. Capolino (Taylor and Francis, Oxford, 2009), pp. 34-1–34-68 Google Scholar
  5. 5.
    A.A. Serga, A.V. Chumak, B. Hillebrands, YIG magnonics. J. Phys. D, Appl. Phys. 43, 264002 (2010) CrossRefGoogle Scholar
  6. 6.
    V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D, Appl. Phys. 43, 264001 (2010) CrossRefGoogle Scholar
  7. 7.
    G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, M. Kostylev, Brillouin light scattering studies of planar metallic magnonic crystals. J. Phys. D, Appl. Phys. 43, 264003 (2010) CrossRefGoogle Scholar
  8. 8.
    I.V. Zavislyak, M.A. Popov, Microwave properties and applications of yttrium iron Garnet (YIG) films: current state of art and perspectives, in Yttrium: Compounds, Production and Applications (Materials Science and Technologies), ed. by B.D. Volkerts (Nova Science Publishers, New York, 2011), pp. 87–126 Google Scholar
  9. 9.
    J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, S.N. Stitzer, Ferrite devices and materials. IEEE Trans. Microw. Theory Tech. 50(3), 721–737 (2002) CrossRefGoogle Scholar
  10. 10.
    A.V. Chumak, T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev, A current-controlled, dynamic magnonic crystal. J. Phys. D, Appl. Phys. 42, 205005 (2009) CrossRefGoogle Scholar
  11. 11.
    N.Y. Grigoryeva, R.A. Sultanov, B.A. Kalinikos, Dual-tunable hybrid wave hexaferrite-ferroelectric millimeter-wave phase shifter. Electron. Lett. 47(1), 35–36 (2011) CrossRefGoogle Scholar
  12. 13.
    M.G. Cottam (ed.), Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices (World Scientific, Singapore, 1994) Google Scholar
  13. 14.
    E. Wigen (ed.), Nonlinear Phenomena and Chaos in Magnetic Materials (World Scientific, Singapore, 1994) Google Scholar
  14. 15.
    G. Srinivasan, A.N. Slavin (eds.), High Frequency Processes in Magnetic Materials (World Scientific, Singapore, 1995) Google Scholar
  15. 15.
    B. Hillebrands, K. Ounadjela (eds.), Spin Dynamics in Confined Magnetic Structures, vol. I (Springer, Berlin, 2002) Google Scholar
  16. 16.
    B. Hillebrands, K. Ounadjela (eds.), Spin Dynamics in Confined Magnetic Structures, vol. II (Springer, Berlin, 2003) Google Scholar
  17. 13.
    S.O. Demokritov (ed.), Spin Wave Confinement (Pan Stanford Publishing Pte. Ltd., Singapore, 2009) Google Scholar
  18. 14.
    L. Brillouin, M. Parodi, Propagation des Ondes dans les Milieux Periodiques (Malson Dunod, Paris, 1956) Google Scholar
  19. 15.
    N.-N. Chen, A.N. Slavin, M.G. Cottam, Gap solitons in periodic structures: modulated magnetic thin films. Phys. Rev. B 47(14), 8667–8671 (1993) CrossRefGoogle Scholar
  20. 16.
    A.B. Ustinov, N.Y. Grigorieva, B.A. Kalinikos, Observation of spin-wave envelope solitons in periodic magnetic film structures. JETP Lett. 88(1), 31–35 (2008) CrossRefGoogle Scholar
  21. 17.
    A.B. Ustinov, B.A. Kalinikos, V.E. Demidov, S.O. Demokritov, Formation of gap solitons in ferromagnetic films with a periodic metal grating. Phys. Rev. B 81, 180406(R) (2010) CrossRefGoogle Scholar
  22. 22.
    A.V. Drozdovskii, M.A. Cherkasskii, A.B. Ustinov, N.G. Kovshikov, B.A. Kalinikos, Formation of envelope solitons of spin-wave packets propagating in thin-film magnon crystals. JETP Lett. 91(1), 16–20 (2010) CrossRefGoogle Scholar
  23. 18.
    A.V. Chumak, V.S. Tiberkevich, A.D. Karenowska, A.A. Serga, J.F. Gregg, A.N. Slavin, B. Hillebrands, All-linear time reversal by a dynamic artificial crystal. Nat. Commun. 94, 141–146 (2010) CrossRefGoogle Scholar
  24. 19.
    A.V. Chumak, P. Dhagat, A. Jander, A.A. Serga, B. Hillebrands, Reverse Doppler effect of magnons with negative group velocity scattered from a moving Bragg grating. Phys. Rev. B 81, 140404(R) (2010) CrossRefGoogle Scholar
  25. 24.
    J. McCord, T. Gemming, L. Schultz, J. Fassbender, M.O. Liedke, M. Frommberger, E. Quandt, Magnetic anisotropy and domain patterning of amorphous films by He-ion irradiation. Appl. Phys. Lett. 86, 162502 (2005) CrossRefGoogle Scholar
  26. 25.
    S.G. Reidy, L. Cheng, W.E. Bailey, Dopants for independent control of precessional frequency and damping in Ni81Fe19 (50 nm) thin films. Appl. Phys. Lett. 82, 1254–1257 (2003) CrossRefGoogle Scholar
  27. 26.
    A.V. Chumak, P. Pirro, A.A. Serga, M.P. Kostylev, R.L. Stamps, H. Schultheiss, K. Vogt, S.J. Hermsdoerfer, B. Laegel, P.A. Beck, B. Hillebrands, Spin-wave propagation in a microstructured magnonic crystal. Appl. Phys. Lett. 95, 262508 (2009) CrossRefGoogle Scholar
  28. 27.
    J. Wang, A.O. Adeyeye, N. Singh, Magnetostatic interactions in mesoscopic Ni80Fe20 ring arrays. Appl. Phys. Lett. 87, 262508 (2005) CrossRefGoogle Scholar
  29. 28.
    S.L. Vysotskii, S.A. Nikitov, Y.A. Filimonov, Magnetostatic waves in 2D periodic structures – magneto-photonic crystals. J. Exp. Theor. Phys. 128(3), 636–644 (2005) Google Scholar
  30. 29.
    A.V. Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev, Design and optimization of one-dimensional ferrite-film based magnonic crystals. J. Appl. Phys. 105, 083906 (2009) CrossRefGoogle Scholar
  31. 30.
    A.V. Voronenko, S.V. Gerus, V.D. Kharitonov, Bragg diffraction of surface magnetostatic waves from magnetic lattices. Russ. Phys. J. 31, 915–923 (1988) Google Scholar
  32. 31.
    J. Das, B.A. Kalinikos, A.R. Barman, C.E. Patton, Multifunctional dual-tunable low loss ferrite–ferroelectric heterostructures for microwave devices. Appl. Phys. Lett. 91, 172516 (2007) CrossRefGoogle Scholar
  33. 32.
    N.Y. Grigoryeva, B.A. Kalinikos, Dispersion characteristics of dual-tunable 1D magnonic crystal, in Proc. of Joint European Magnetic Symposia (JEMS 2010), Krakow, Poland, 23–28 August (2010), p. 72 Google Scholar
  34. 33.
    C. Elachi, Waves in active and passive periodic structures: a review. IEEE Proc. 64(12), 1666–1698 (1976) CrossRefGoogle Scholar
  35. 34.
    B.A. Kalinikos, Dipole-exchange spin-wave spectrum of magnetic films, in Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices, ed. by M.G. Cottam (World Scientific, Singapore, 1994), pp. 89–156 CrossRefGoogle Scholar
  36. 35.
    C. Elachi, Magnetic wave propagation in a periodic medium. IEEE Trans. Magn. MAG-11, 36–39 (1975) CrossRefGoogle Scholar
  37. 36.
    N.Y. Grigorieva, B.A. Kalinikos, Dispersion characteristics of spin waves in planar periodic structures based on ferromagnetic films. Tech. Phys. 54(8), 1196–1203 (2009) CrossRefGoogle Scholar
  38. 37.
    S.L. Vysotskii, E.N. Beginin, S.A. Nikitov, E.S. Pavlov, Y.A. Filimonov, Effect of ferrite magnonic crystal metallization on Bragg resonances of magnetostatic surface waves. Tech. Phys. Lett. 37(11), 1024–1026 (2011) CrossRefGoogle Scholar
  39. 38.
    K.H. Chi, Y. Zhu, R.W. Mao, J.P. Dolas, C.S. Tsai, An approach for analysis of magnetostatic volume waves in magnonic crystals. J. Appl. Phys. 109, 07D320 (2011) CrossRefGoogle Scholar
  40. 39.
    M. Krawczyk, H. Puszkarski, Plane-wave theory of three-dimensional magnonic crystals. Phys. Rev. B 77, 054437 (2008) CrossRefGoogle Scholar
  41. 41.
    H. Puszkarski, M. Krawczyk, J.-C.S. Lévy, D. Mercier, Ferromagnetic layered composites. Transfer matrix approach. Acta Phys. Pol. A 100, 195–214 (2001) Google Scholar
  42. 42.
    M.P. Kostylev, A.A. Stashkevich, N.A. Sergeeva, Collective magnetostatic modes on a one-dimensional array of ferromagnetic stripes. Phys. Rev. B 69, 064408 (2004) CrossRefGoogle Scholar
  43. 43.
    V.V. Kruglyak, R.J. Hicken, A.N. Kuchko, V.Y. Gorobets, Spin waves in a periodically layered magnetic nanowire. J. Appl. Phys. 98, 014304 (2005) CrossRefGoogle Scholar
  44. 44.
    L. Dobrzynski, B. Djafari-Rouhani, H. Puszkarski, Theory of bulk and surface magnons in Heisenberg ferromagnetic superlattices. Phys. Rev. B 33, 3251–3256 (1986) CrossRefGoogle Scholar
  45. 45.
    V.V. Kruglyak, A.N. Kuchko, V.I. Finokhin, Spin-wave spectrum of an ideal multilayer magnet upon modulation of all parameters of the Landau–Lifshitz equation. Phys. Solid State 46(5), 867–871 (2004) CrossRefGoogle Scholar
  46. 46.
    B.A. Kalinikos, A.N. Slavin, Theory of dipole–exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C, Solid State Phys. 19, 7013–7033 (1986) CrossRefGoogle Scholar
  47. 47.
    A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Cleveland, 1996) Google Scholar
  48. 48.
    J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11–12), 351–357 (1945) CrossRefGoogle Scholar
  49. 49.
    R.I. Joseph, E. Schlomann, Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36(5), 1579–1593 (1965) CrossRefGoogle Scholar
  50. 50.
    F. Ciubotaru, A.V. Chumak, A.A. Serga, P. Pirro, N.Y. Grigoryeva, B. Hillebrands, Single band gap microstructured magnonic crystal. J. Phys. D, Appl. Phys. 45(25), 255002 (2012) CrossRefGoogle Scholar
  51. 51.
    B.A. Kalinikos, M.P. Kostylev, N.V. Kozhus, A.N. Slavin, The dipole–exchange spin wave spectrum for anisotropic ferromagnetic films with mixed exchange boundary conditions. J. Phys. Condens. Matter 2, 9861–9877 (1990) CrossRefGoogle Scholar
  52. 52.
    R. Petit, Electromagnetic grating theories: limitations and successes. Nouv. Rev. Opt. 6(3), 129–135 (1975) CrossRefGoogle Scholar
  53. 53.
    Y.V. Gulyaev, S.A. Nikitov, V.P. Plesskii, Reflection of manetostatic waves from periodically corrugated area of the ferrite surface. J. Commun. Technol. Electron. 11, 2282–2290 (1981) Google Scholar
  54. 54.
    E. Popov, M. Neviére, Grating theory: new equations in Fourier space leading to fast converging results for TM polarization. J. Opt. Soc. Am. A 17(10), 1773–1784 (2000) CrossRefGoogle Scholar
  55. 55.
    V.E. Demidov, B.A. Kalinikos, P. Edenhofer, Dipole–exchange theory of hybrid electromagnetic-spin waves in layered film structures. J. Appl. Phys. 91(12), 10007–10016 (2002) CrossRefGoogle Scholar
  56. 56.
    B.A. Kalinikos, P.A. Kolodin, Excitation of propagating dipole–exchange spin waves in ferromagnetic double-film structure. IEEE Trans. Magn. 28(5), 3204–3206 (1992) CrossRefGoogle Scholar
  57. 57.
    A.R. Baghai-Wadji, Theory and applications of Green’s functions. Int. Int. J. High Speed Electron. Syst. 10(4), 949–1015 (2000) CrossRefGoogle Scholar
  58. 58.
    G.T. Rado, J.R. Weertman, Spin-wave resonance in a ferromagnetic metal. J. Phys. Chem. Solids 11, 315–333 (1959) CrossRefGoogle Scholar
  59. 59.
    W.S. Ament, G.T. Rado, Electromagnetic effects of spin wave resonance in ferromagnetic metals. Phys. Rev. 97(6), 1558–1566 (1955) CrossRefGoogle Scholar
  60. 60.
    C. Kittel, Excitation of spin waves in a ferromagnet by a uniform rf field. Phys. Rev. 110(6), 1295–1297 (1958) CrossRefGoogle Scholar
  61. 61.
    L.V. Kantorovich, V.I. Krilov, Appropriate Methods of Higher Analysis (Interscience, New York, 1958). Sect. 1.3 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Saint-Petersburg Electrotechnical UniversitySaint-PetersburgRussia

Personalised recommendations