Advertisement

Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet Median

Chapter

Abstract

Information Geometry has been introduced by Rao, and axiomatized by Chentsov, to define a distance between statistical distributions that is invariant to non-singular parameterization transformations. For Doppler/Array/STAP Radar Processing, Information Geometry Approach will give key role to Homogenous Symmetric bounded domains geometry. For Radar, we will observe that Information Geometry metric could be related to Kähler metric, given by Hessian of Kähler potential (Entropy of Radar Signal given by \(-log[det(R)]\)). To take into account Toeplitz structure of Time/Space Covariance Matrix or Toeplitz-Block-Toeplitz structure of Space-Time Covariance matrix, Parameterization known as Partial Iwasawa Decomposition could be applied through Complex Autoregressive Model or Multi-channel Autoregressive Model. Then, Hyperbolic Geometry of Poincaré Unit Disk or Symplectic Geometry of Siegel Unit Disk will be used as natural space to compute “p-mean” (\(p=2\) for “mean”, \(p=1\) for “median”) of covariance matrices via Karcher flow derived from Weiszfeld algorithm extension on Cartan-Hadamard manifold. This new mathematical framework will allow development of Ordered Statistic (OS) concept for Hermitian Positive Definite Covariance Space/Time Toeplitz matrices or for Space-Time Toeplitz-Block-Toeplitz matrices. We will define Ordered Statistic High Doppler Resolution CFAR (OS-HDR-CFAR) and Ordered Statistic Space-Time Adaptive Processing (OS-STAP).

Keywords

Cartan symmetric spaces Center of mass p-mean Siegel upper-half plane Cartan-Hadamard manifold Homogenous bounded domains Poincaré Median disk Siegel disk Fréchet metric space  Berger fibration Mostow decomposition Radar CFAR  STAP 

References

  1. 1.
    Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43, 904–924 (2011)Google Scholar
  2. 2.
    Airault, H.: Stochastic analysis on finite dimensional Siegel disks, approach to the finite dimensional Siegel disk and upper-half plane. Bull. Sci. Math. 128(7), 605–659 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Airault, H., Malliavin, P.: Regularized Brownian motion on the Siegel disk of infinite dimension. Ukrainian Math. J. 52(9), 1324–1333 (2000)Google Scholar
  4. 4.
    Airault, H., Malliavin, P., Thalmaier, A.: Brownian measures on Jordan-Virasoro curves associated to the Weil-Petersson metric. J. Funct. Anal. 259, 3037–3079 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Al-Bashrawi, S.A.: Reductive Lie Groups and Mostow Fibration, Master of Science, Dhahran, 2004Google Scholar
  6. 6.
    Armatte, M.: Fréchet et la médiane: un moment dans une histoire de la robustesse, J. Soc. Français Stat. 147(2), 67–72 (2006)Google Scholar
  7. 7.
    Arnaudon, M.: Espérances Conditionnelles et C-Martingales dans les Variétés, Séminaire de Probabilités-XXVIII. Lecture Notes in Mathematics, vol. 1583, pp. 300–311. Springer, Berlin (1994)Google Scholar
  8. 8.
    Arnaudon, M.: Barycentres Convexes et Approximations des Martingales dans les Variétés, Séminaire de Probabilités-XXIX. Lecture Notes in Mathematics, vol. 1613, pp. 70–85. Springer, Berlin (1995)Google Scholar
  9. 9.
    Arnaudon, M., Li, X.M.: Barycenters of measures transported by stochastic flows. Ann. Probab. 33(4), 1509–1543 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center CoRR. doi:abs/1101.4718: 2011Google Scholar
  11. 11.
    Arnaudon, M., Dombry, C., Phan, A., Yang, L.: Stochastic algorithms for computing means of probability measures. Stochas. Process. Their Appl. http://hal.archives-ouvertes.fr/hal-00540623 (To appear)
  12. 12.
    Barbaresco, F.: Algorithme de Burg Régularisé FSDS. Comparaison avec l’algorithme de Burg MFE, XVème colloque GRETSI 1, 29–32 (1995)Google Scholar
  13. 13.
    Barbaresco, F.: Super Resolution Spectrum Analysis Regularization: Burg, Capon and Ago-antagonistic Algorithms, EUSIPCO-96, pp. 2005–2008, Trieste, Sept. 1996Google Scholar
  14. 14.
    Barbaresco, F.: Recursive Eigendecomposition via Autoregressive Analysis and Ago-antagonistic Regularization. In: Proc. ICASSP-97, Munich, Apr. 1997Google Scholar
  15. 15.
    Barbaresco, F.: Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices and information geometry. In: IEEE RadarCon, Rome, May 2008Google Scholar
  16. 16.
    Barbaresco, F.: Interactions between symmetric cone and information geometries: Bruhat-tits and Siegel spaces models for high resolution autoregressive Doppler imagery. In: ETVC’08 Conf., Ecole Polytechnique, Nov. 2008. Lecture Notes in Computer Science, vol. 5416. Springer, Berlin (2009)Google Scholar
  17. 17.
    Barbaresco, F., Bouyt, G.: Espace Riemannien symétrique et géométrie des espaces de matrices de covariance: équations de diffusion et calculs de médianes. In: GRETSI Conference, Dijon, Sept. 2009Google Scholar
  18. 18.
    Barbaresco, F.: New foundation of radar Doppler and array processing based on German mathematical works. In: International Radar Symposium, Hamburg, Sept. 2009Google Scholar
  19. 19.
    Barbaresco, F.: New foundation of radar Doppler signal processing based on advanced differential geometry of symmetric spaces: Doppler matrix CFAR and radar application. In: Radar’09 Conference, Bordeaux, Oct. 2009Google Scholar
  20. 20.
    Barbaresco, F.: Robust median-based STAP in inhomogeneous secondary data: Frechet information geometry of covariance matrices. In: 2nd French-Singaporian SONDRA Workshop on EM Modeling, New Concepts and Signal Processing For Radar Detection and Remote Sensing, pp. 25–28 , Cargese, Francem, May 2010Google Scholar
  21. 21.
    Barbaresco, F.: Geometric science of information: modern geometric foundation of radar signal processing. In: 8th International IEEE Conference on Communications, Bucharest, Romania, 10–12 June 2010Google Scholar
  22. 22.
    Barbaresco, F.: Science géométrique de l’Information: Géométrie des matrices de covariance, espace métrique de Fréchet et domaines bornés homogènes de Siegel. In: Conférence GRETSI’11, Bordeaux, Sept. 2011Google Scholar
  23. 23.
    Barbaresco, F.: Robust statistical radar processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP processing in Siegel homogeneous bounded domains. In: Proceedings of IRS’11, International Radar Conference, Leipzig, Sept. 2011Google Scholar
  24. 24.
    Barbaresco, F.: Geometric radar processing based on Fréchet distance: information geometry versus optimal transport theory. In: Proceedings of IRS’11, International Radar Conference, Leipzig, Sept. 2011Google Scholar
  25. 25.
    Bassanelli, G.: On horospheres and holomorphic endomorphisms of the Siegel disc. In: Rendiconti del Seminario Matematico della Università di Padova, vol. 70, pp. 147–165 (1983)Google Scholar
  26. 26.
    Berezin, F.A.: Quantization in complex symmetric spaces. Math. USSR 9, 341–379 (1975)Google Scholar
  27. 27.
    Berger, M.: Les espaces symétriques non-compact. Ann. Sci. E.N.S. (\(3^{\acute{e}}{\rm m}{\rm e}\) série) 74(2), 85–177 (1957)Google Scholar
  28. 28.
    Bergman, S.: The Kernel Function and Conformal Mapping. Mathematical Survey and Monographs, vol. 5. American Mathematical Society, Providence (2000)Google Scholar
  29. 29.
    Bhashyam, B., Barbaresco, F.: Application of Riemannian mean of covariance matrices to space-time adaptive processing. Submitted to IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), USA, 2012Google Scholar
  30. 30.
    Bhatia, R.: Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, illustrated edition, Princeton (2006)Google Scholar
  31. 31.
    Bourdon, M.: Structure conforme au bord et flot géodésique d’un CAT(-1)-espace. L’enseignement Math. 41, 63–102 (1995)Google Scholar
  32. 32.
    Brenier, Y.: Polar factorisation and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)Google Scholar
  33. 33.
    Burbea, J., Rao, C.R.: Differential metrics in probability spaces. Probab. Math. Stat. 3(Fasc. 2), 241–258 (1984)Google Scholar
  34. 34.
    Calvo, M., Oller, J.M.: A distance between multivariate normal distribution based in an embedding into the Siegel group. J. Multivar. Anal. 35(2), 223–242 (1990)Google Scholar
  35. 35.
    Cartan, E.: Groupes simples clos et ouverts et géométrie Riemannienne. J. Math. Pure. Appl. 8, 1–34 (1929)MathSciNetGoogle Scholar
  36. 36.
    Cartan, E.: Sur les domaines bornés de l’espace de n variables complexes. In: Abh. Math, Seminar, Hamburg, 1935Google Scholar
  37. 37.
    Charon, N., Barbaresco, F.: Une nouvelle approche pour la détection de cibles dans les images radar basée sur des distances et moyennes dans des espaces de matrices de covariance. Revue Traitement du Sig. 26(4) (2009)Google Scholar
  38. 38.
    Chaure, C., Barbaresco, F.: New generation Doppler radar processing: ultra-fast robust Doppler spectrum barycentre computation scheme in Poincaré’s unit disk. In: EURAD’10 Conference, Paris, Sept. 2010Google Scholar
  39. 39.
    Chentsov, N.N.: Statistical Decision Rules and Optimal Inferences. Transactions of Mathematics Monograph, vol. 53. American Mathematical Society, Providence (1982; Published in Russian in 1972)Google Scholar
  40. 40.
    CIME: Geometry of Homogeneous Bounded Domains. CIME Summer Schools Urbino, Italy 1967. Springer, Berlin (2011)Google Scholar
  41. 41.
    Clerc, J.L., Koufani, K.: Primitive du cocycle de Maslov généralisé. Math. Ann. 337, 91–138 (2007)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Dall’Aglio, G.: Fréchet Classes: The Beginnings, Advances in Probability Distributions with Given Marginals. Mathematics and Its Applications. Kluwer, Dordrecht (1991)Google Scholar
  43. 43.
    Doss, S.: Sur la moyenne d’un élément aléatoire dans un espace distancié. Bull. Sci. Math. 73, 48–72 (1949)MathSciNetMATHGoogle Scholar
  44. 44.
    Douady, A., Earle, C.J.: Conformally natural extension of homeomorphisms of circle. Acta Math. 157, 23–48 (1986)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Dowson, D.C., Landau, B.V.: The Fréchet distance between multivariate normal distributions. J. Multivar. Anal. 12, 450–455 (1982)Google Scholar
  46. 46.
    Earle, C.J.: Angular derivatives of the barycentric extension. Complex Var. Theory Appl. 11, 189–195 (1986)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Es-Sahib, A., Heinrich, H.: Barycentres canoniques sur un espace métrique à courbure négative. In: Séminaire de Probabilités XXXIII. Lecture Notes in Mathematics, vol. 1709, pp. 355–370. Springer, Berlin (1999)Google Scholar
  48. 48.
    Émery, M., Mokobodzki, G.: Sur le barycentre d’une probabilité dans une variété. Sém. de Probab. Strasbourg 25, 220–233 (1991)Google Scholar
  49. 49.
    Fortet, R., Mourier, E.: Convergence de la répartition empirique vers la répartition théorique. Ann. Sci. Ecole Norm. Sup. 70, 267–285 (1953)Google Scholar
  50. 50.
    Fréchet, M.: Sur la précision comparée de la moyenne et de la médiane. Aktuarské Vedy 5, 29–34 (1935)Google Scholar
  51. 51.
    Fréchet, M.: Comparaison des diverses mesures de la dispersion. Revue Inst. Int. Stat. 8(1), 1–12 (1940)MATHCrossRefGoogle Scholar
  52. 52.
    Fréchet, M.R.: Sur l’extension de certaines évaluations statistiques au cas de petits échantillons. Rev. Int. Stat. Inst. 11(3/4), 182–205 (1943) (Published in IHP Lecture in 1939)Google Scholar
  53. 53.
    Fréchet, M.R.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10(4), 215–310 (1948)Google Scholar
  54. 54.
    Fréchet, M.: Sur la distance de deux lois de probabilité. C. R. Acad. Sci. Paris 244, 689–692 (1957)Google Scholar
  55. 55.
    Friedrich, T.: Die Fisher-Information und symplektische Strukturen. Math. Nachr. 153, 273–296 (1991)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Fubini, G.: The distance in general Fuchsian geometries. Proc. Natl. Acad. Sci. 26, 700–708 (1940)Google Scholar
  57. 57.
    Godement, R.: Introduction à la Théorie des Groupes de Lie. Springer, Berlin (2004)Google Scholar
  58. 58.
    Hua, L.-K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. American Mathematical Society, Providence (1958)Google Scholar
  59. 59.
    Hua, L.K.: Inequalities involving determinant. Acta Math. Sin. 5, 463–470 (1955)Google Scholar
  60. 60.
    Hermann, R.: Geodesics of bounded, symmetric domains. Comm. Math. Helvetici 35, 1–8 (1960)Google Scholar
  61. 61.
    Hermann, R.: Geometric Aaspects of potential theory in the bounded symmetric domains. Math. Ann. 148, 349–366 (1962)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Hermann, R.: Geometric aspects of potential theory in the bounded symmetric domains II. Math. Ann. 151, 143–149 (1963)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Hermann, R.: Geometric aspects of potential theory in the bounded symmetric domains III. Math. Ann. 153, 384–394 (1963)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Herer, W.: Espérance mathématique au sens de Doss d’une variable aléatoire dans un espace métrique. C. R. Acad. Sci. Paris (Ser. I) 302, 131–134 (1991)Google Scholar
  65. 65.
    Itoh, M., Shishido, Y.: Fisher information metric and Poisson kernels. Diff. Geom. Appl. 26, 347–356 (2008)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Iwasawa, K.: On some types of topological groups. Ann. Math. 50(2), 507–558 (1949)Google Scholar
  67. 67.
    Kanhouche, R.: A Modified Burg Algorithm Equivalent In Results to Levinson Algorithm. CMLA, Sept. 2003. http://hal.inria.fr/docs/00/00/06/24/PDF/BurgLevRK.pdf (Preprint)
  68. 68.
    Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Karpelevitch, F.I.: The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces. Trudy Moskov. Mat. Obsc. 14, 48–185 (translated as Trans. Moscow Math. Soc., pp. 51–199) (1967)Google Scholar
  70. 70.
    Koenker, R.: The median is the message: toward the Fréchet median. J. Soc. Française Stat. 147(2), 65–66 (2006)Google Scholar
  71. 71.
    Kolmogorov, A.N.: The method of the median in the theory of errors. Matermatichiskii Sbornik 38, 47–50 (1931)Google Scholar
  72. 72.
    Koszul, J.-L.: Sur la forme hermitienne canonique des espaces homogènes complexes. Can. J. Math. 7, 562–576 (1955)MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Koszul, J.-L.: Exposés sur les Espaces Homogènes Symétriques. Publicacao da Sociedade de Matematica de Sao Paulo (1959)Google Scholar
  74. 74.
    Koszul, J.L.: Domaines bornés homogènes et orbites de groupes et transformations affines. Bull. SMF 89, 515–533 (1961)Google Scholar
  75. 75.
    Leray, J.: Complément à la Théorie d’Arnold de l’indice de Maslov. Convegno di Geometrica Simplettica et Fisica Matematica, Instituto di Alta Matematica, Roma (1973)Google Scholar
  76. 76.
    Leray, J.: Analyse lagrangienne et mécanique quantique. Publications de l’Université Louis Pasteur, Strasbourg (1978)Google Scholar
  77. 77.
    Levy, P.: Distance de deux variables aléatoires et distance de deux lois de probabilité. In: Fréchet, M. (ed.) Généralités sur les Probabilités de Variables Aléatoires, pp. 286–301. Gauthier-Villars, Paris (1937)Google Scholar
  78. 78.
    Lichnerowicz, A.: Variétés complexes et tenseur de Bergmann. Ann. Inst. Fourier 15(2), 345–407 (1965)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Lichnerowicz, A.: Sur les groupes d’automorphismes de certaines variétés kählériennes. C. R. Acad. Sci. Paris 239, 1344–1346 (1954)Google Scholar
  80. 80.
    Larotonda, G.: Geodesic Convexity Symmetric Spaces and Hilbert-Schmidt operators. Ph.D. Thesis, Buenos Aires, 2004Google Scholar
  81. 81.
    Maass, H.: Lectures on Siegel’s Modular Functions. Tata Institute of Fundamental Research, Bombay (1955) (Noted by T.P. Srinivasan)Google Scholar
  82. 82.
    Malliavin, P.: The canonical diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. 329, 325–329 (1999)Google Scholar
  83. 83.
    Malliavin, P.: Invariant or quasi-invariant probability measures for infinite dimensional groups. Jpn. J. Math. 3, 19–47 (2008)Google Scholar
  84. 84.
    McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)Google Scholar
  85. 85.
    Mitchell, J.: The kernel function in the geometry of matrices. Duke Math. J. 19, 575–584 (1944)CrossRefGoogle Scholar
  86. 86.
    Mitchell, J.: A theorem in the geometry of matrices. Proc. Am. Math. Soc. 2(2) (1951)Google Scholar
  87. 87.
    Mitchell, J.: Potential theory in the geometry of matrices. Trans. Am. Math. Soc. 79(2) (1955)Google Scholar
  88. 88.
    Mneimné, R., Testard, F.: Introduction à la Théorie des Groupes de Lie Classiques. Hermann, Paris (1986)Google Scholar
  89. 89.
    Monge, G.: Mémoire sur la théorie des déblais et des remblais. Hist. Acad. R. Sci. Paris 666–704 (1781)Google Scholar
  90. 90.
    Mostow, G.D.: Covariant fiberings of Klein spaces. Am. J. Math. 77, 247–278 (1955)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Mostow, G.D.: Some new decomposition theorems for semi-simple groups. Mem. Am. Math. Soc. 14, 31–54 (1955)Google Scholar
  92. 92.
    Mostow, G.D.: Covariant fiberings of Klein spaces, II. Am. J. Math. 84(3), 466–474 (1962)MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Nielsen, F., Nock, R.: Hyperbolic Voronoi diagrams made easy. In: Proceedings of the 2010 International Conference on Computational Science and Its Applications (ICCSA ’10). IEEE Computer Society, Washington, DC, USA, pp. 74–80. doi: 10.1109/ICCSA.2010.37
  94. 94.
    Oudin, M., Delmas, J.P., Barbaresco, F.: Siegel distance-based covariance matrix selection for space-time adaptive processing. In: Radar’09, Bordeaux, Oct. 2009Google Scholar
  95. 95.
    Paulin, F.: Un groupe hyperbolique est déterminé par son bord. J. Lond. Math. Soc. 54, 50–74 (1996)MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Piatetskii-Shapiro, I.: Automorphic Functions and the Geometry of Classical Domains, 340 pp. Gordon and Breach Science, Amsterdam (1969)Google Scholar
  97. 97.
    Picard, J.: Barycentres et martingales sur une variété. Ann. IHP 30, 647–702 (1994)MathSciNetMATHGoogle Scholar
  98. 98.
    Poincaré, H.: Les fonctions analytiques de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo (1884–1940) 23, 185–220 (1907)Google Scholar
  99. 99.
    Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)MathSciNetMATHGoogle Scholar
  100. 100.
    Roman, J.R., et al.: Parametric adaptive matched filter for airborne radar applications. IEEE Trans. AES 36(2), 677–692 (2000)Google Scholar
  101. 101.
    Shima, H.: The Geometry of Hessian Structures. World Scientic, Singapore (2007)Google Scholar
  102. 102.
    Siegel, C.L.: Symplectic geometry. Am. J. Math. 65, 1–86 (1943)CrossRefGoogle Scholar
  103. 103.
    Siegel, C.L.: Analytic Functions of Several Complex Variables. Princeton University Press, Princeton (1949)MATHGoogle Scholar
  104. 104.
    Siegel, C.L.: Lectures on Quadratic Forms. Tata Institute of Fundamental Research, Bombay (1957) (Noted by K.G. Ramanathan)Google Scholar
  105. 105.
    Souriau, J.-M.: Construction explicite de l’indice de Maslov. In: Group Theoretical Methods in Physics. Lecture Notes in Physics, vol. 50, pp. 17–148. Springer, Berlin (1975)Google Scholar
  106. 106.
    Souriau, J.M.: La structure Symplectique de la mécanique décrite par Lagrange en 1811. J. Hist. Sci. Marseille ( Mécanique et Mathématiques), Vieille Charité 94, 45–54 (4–5 Oct. 1985)Google Scholar
  107. 107.
    Sung, N.K., Stangenhaus, G., David, H.T.: A Cramer-Rao analogue for median-unbiaised estimators. Trabajos De Estadistica 5(2), 83–94 (1990)Google Scholar
  108. 108.
    Sturm, C.T.: Nonlinear Martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab. 30(3), 1195–1222 (2002)Google Scholar
  109. 109.
    Tumpach, A.B.: Mostow’s Decomposition Theorem for L*-Groups and Applications to Affine Coadjoint Orbits and Stable Manifolds (Preprint 2011)Google Scholar
  110. 110.
    Takatsu, A.: On Wasserstein geometry of the space of Gaussian measures. Osaka J. Math. (2011). doi: abs/0801.2250 (To appear)
  111. 111.
    Tumpach, A.B.: Variétés Kählériennes et Hyperkählériennes de Dimension Infinie. Ph.D. Thesis, Ecole Polytechnique, Palaiseau, France, July 2005Google Scholar
  112. 112.
    Villani, C.: Optimal Transport, Old and New. Springer, Berlin (2008). http://math.univ-lyon1.fr/homes-www/villani/Cedrif/B07D.StFlour.pdf
  113. 113.
    Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Am. Math. Soc. (Trudy Moskov. Mat. Obshch) 12, 340–403 (1963)Google Scholar
  114. 114.
    Wax, M., Kailath, T.: Efficient Inversion of Toeplitz-Block Toeplitz matrix. IEEE Trans. ASSP 31(5), 1218–1221 (1983)Google Scholar
  115. 115.
    Weil, A.: Introduction à l’étude des variétés Kählériennes. Actualités Scientifiques et Industrielles, vol. 1267. Publications de l’Institut de Mathématiques de l’université de Nancago VI. Hermann, Paris (1958)Google Scholar
  116. 116.
    Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. J. 43, 355–386 (1937)Google Scholar
  117. 117.
    Yang, L., Arnaudon, M., Barbaresco, F.: Geometry of covariance matrices and computation of median. In: MaxEnt’10 Conference, France, July 2010Google Scholar
  118. 118.
    Yang, L., Arnaudon, M., Barbaresco, F.: Riemannian median, geometry of covariance matrices and radar target detection. In: EURAD’10 Conference, Paris, Sept. 2010Google Scholar
  119. 119.
    Yang, L.: Riemannian median and its estimation. LMS J. Comput. Math. 13, 461–479 (2011)Google Scholar
  120. 120.
    Yang, L.: Medians of Probability Measures in Riemannian Manifolds and Applications to Radar Target Detection. Ph.D. Thesis, Poitiers, 15 Dec. 2011Google Scholar
  121. 121.
    Yang, L., Arnaudon, M., Barbaresco, F.: Geometry of covariance matrices and computation of median. AIP Conf. Proc. 1305, 479–486 (2011)MathSciNetCrossRefGoogle Scholar
  122. 122.
    Zelikin, M.I.: Control Theory and Optimization I. Homogeneous Spaces and the Riccati Equation in the Calculus of Variations. Springer, Berlin (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Thales Air Systems, Surface Radar Domain, Technical Directorate, Advanced Developments DepartmentLimoursFrance

Personalised recommendations