Advertisement

Derivatives of Multilinear Functions of Matrices

  • Priyanka Grover
Chapter

Abstract

Perturbation or error bounds of functions have been of great interest for a long time. If the functions are differentiable, then the mean value theorem and Taylor’s theorem come handy for this purpose.

Notes

Acknowledgments

This article is based on my talk at Indo-French Seminar on Matrix Information Geometries, funded by Indo-French Centre for the Promotion of Advanced Research. I am thankful to my supervisor Prof. Rajendra Bhatia and other participants of the Seminar for their useful comments and suggestions.

References

  1. 1.
    Bapat, R.B.: Inequalities for mixed Schur functions. Linear Algebra Appl. 83, 143–149 (1986)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bapat, R.B.: Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl. 126, 107–124 (1989)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bhatia, R.: Matrix Analysis. Springer, New York (1997)CrossRefGoogle Scholar
  4. 4.
    Bhatia, R.: Positive Definite Matrices. Princeton University Press, New Jersey (2007)Google Scholar
  5. 5.
    Bhatia, R.: Perturbation Bounds for Matrix Eigenvalues, SIAM, Philadelphia (2007). Expanded reprint of 1987 editionGoogle Scholar
  6. 6.
    Bhatia, R.: Variation of symmetric tensor powers and permanents. Linear Algebra Appl. 62, 269–276 (1984)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bhatia, R., Dias da Silva, J.A.: Variation of induced linear operators. Linear Algebra Appl. 341, 391–402 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bhatia, R., Friedland, S.: Variation of Grassman powers and spectra. Linear Algebra Appl. 40, 1–18 (1981)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bhatia, R., Jain, T.: Higher order derivatives and perturbation bounds for determinants. Linear Algebra Appl. 431, 2102–2108 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Dieudonn\(\acute{\text{ e}}\) J.: Foundations of Modern Analysis. Academic Press, New York (1960)Google Scholar
  11. 11.
    Grover P.: Derivatives and perturbation bounds for symmetric tensor powers of matrices, arXiv:1102.2414v2 [math.FA]Google Scholar
  12. 12.
    Gurvits, L.: The Van der Waerden conjecture for mixed discriminants. Adv. Math. 200, 435–454 (2006)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRefGoogle Scholar
  14. 14.
    Jain, T.: Derivatives for antisymmetric tensor powers and perturbation bounds. Linear Algebra Appl. 435, 1111–1121 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Dover Publications, New York (1992). Reprint of 1964 editionGoogle Scholar
  16. 16.
    Merris, R.: Multilinear Algebra. Gordon and Breach Science Publishers, Singapore (1997)MATHGoogle Scholar
  17. 17.
    Minc, H.: Permanents. Addison-Wesley Publishing Company, Massachusetts (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Theoretical Statistics and Mathematics UnitIndian Statistical Institute Delhi CentreNew DelhiIndia

Personalised recommendations