Skip to main content

Particle Filtering on Riemannian Manifolds. Application to Covariance Matrices Tracking

  • Chapter
  • First Online:
Matrix Information Geometry

Abstract

Recently, an extension of the particle filter has been proposed in [13]. This extension deals with tracking hidden states moving on a Riemannian manifold. In fact, in addition to the nonlinear dynamics, the system state is constrained to lie on a Riemannian manifold \({\mathcal M }\), which dimension is much lower than the whole embedding space dimension. The Riemannian manifold formulation of the state space model avoids the curse of dimensionality from which suffer most of the particle filter methods. Furthermore, this formulation is the only natural tool when the embedding Euclidean space cannot be defined (the state space is defined in an abstract geometric way) or when the constraints are not easily handled (space of positive definite matrices).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Article  Google Scholar 

  2. Liu, X., Srivastava, A., Gallivan, K.: Optimal linear representations of images for object recognition. IEEE Pattern Anal. Mach. Intell. 25(5), 662–666 (2004)

    Google Scholar 

  3. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25, 423–444 (2006)

    Article  MathSciNet  Google Scholar 

  4. Fiori, S.: Geodesic-based and projection-based neural blind deconvolution algorithms. Signal process. 88, 521–538 (2008)

    Article  MATH  Google Scholar 

  5. Srivastava, A., Klassen, E.: Bayesian and geometric subspace tracking. Adv. Appl. Probab. 36(1), 43–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Google Scholar 

  7. Manton, J.H.: Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Process. 50(3), 635–65 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds, I. Ann. Stat. 31(1), 1–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds, II. Ann. Stat. 33(3), 1225–1259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  11. Smith, S.T.: Optimization techniques on Riemannian manifolds, Hamiltonian and gradient flows, algorithms and control. In: Bloch, A. (ed.) Fields Institute Communication, vol. 3. American Mathematical Society: Providence, RI, pp. 113–136 (1994)

    Google Scholar 

  12. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, New Jersey (2008)

    MATH  Google Scholar 

  13. Snoussi, H., Mohammad-Djafari, A.: Particle Filtering on Riemannian Manifolds. In: Mohammad-Djafari, A. (ed.) Bayesian Inference and Maximum Entropy Methods, MaxEnt Workshops, July 2006, pp. 219–226, American Institute Physics

    Google Scholar 

  14. Doucet, A., de Freitas, N., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001)

    Google Scholar 

  15. Andrieu, C., Doucet, A., Singh, S., Tadic, V.: Particle methods for change detection, system identification, and control. Proc. IEEE 92(3), 423–438 (March 2004)

    Article  Google Scholar 

  16. Boothby, W.M.: An Introduction to Differential Manifolds and Riemannian Geometry. Academic Press, Orlando (1986)

    Google Scholar 

  17. Fréchet, M.: Leséléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H, Poincaré 10, 215–310 (1948)

    Google Scholar 

  18. Karcher, H.: Riemannian centre of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barndorff-Nielsen, O.: Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. Lond. 353, 401–419 (1977)

    Google Scholar 

  20. Rao, C.R.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)

    MathSciNet  MATH  Google Scholar 

  21. Amari, S.: Differential-Geometrical Methods in Statistics, Volume 28 of Springer Lecture Notes in Statistics. Springer, New York (1985)

    Google Scholar 

  22. Calvo, M., Oller, J.: An explicit solution of information geodesic equations for the multivariate normal model. Stat. Decis. 9, 119–138 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hichem Snoussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Snoussi, H. (2013). Particle Filtering on Riemannian Manifolds. Application to Covariance Matrices Tracking. In: Nielsen, F., Bhatia, R. (eds) Matrix Information Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30232-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30232-9_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30231-2

  • Online ISBN: 978-3-642-30232-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics