Review of the Application of Matrix Information Theory in Video Surveillance

  • M K Bhuyan
  • Malathi T


Video Surveillance is an active research topic in Computer Vision. Its applications include authentication in security sensitive areas, biometric-based specific person identification, overcrowding statistics and congestion control, strange situation detection and alarming, interactive surveillance using multiple cameras and so on. Video surveillance mainly involves modeling of background, detection of motion, classification of moving objects and object tracking. Background modeling is often used to detect moving object in video acquired by a fixed camera. Subspace learning method namely Principal Component Analysis (PCA) have been used to model the background to represent online data content while reducing dimension significantly. Detection and classification of the object of interest in the image captured by the camera is a vital step for automatic activity monitoring. Linear discriminant analysis (LDA) is a well-known classical statistical technique for dimension reduction and feature extraction for classification. This chapter gives an overview of the applications of Matrix Information Theory in video surveillance viz., background modeling by PCA, face recognition/object classification by LDA and finally object tracking using a covariance-based object description. The algorithms which are discussed in this paper are somewhat related to the broad area of Matrix Information Theory.


Linear Discriminant Analysis Independent Component Analysis Background Modeling Independent Component Analysis Foreground Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, San Francisco (2010)Google Scholar
  2. 2.
    Robert, T.C., Lipton, A.J., Kanade, T.: Introduction to the special section on video surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 745–746 (2000)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)CrossRefGoogle Scholar
  4. 4.
    Delac, K., Grgic, M., Grgic, S.: A comparative study of PCA, ICA and LDA. In: Proceedings of the \(5^{th}\) EURASIP Conference on Speech and Image Processing, Multimedia Communications and Services, pp. 99–106 (2005)Google Scholar
  5. 5.
    Austvoll, I., Kwolek, B.: Region covariance matrix-based object tracking with occlusions handling. In: International Conference on Computer Vision and Graphics, pp. 201–208 (2010)Google Scholar
  6. 6.
    Hu, W.M., Tan, T.N., Wang, L., Maybank, S.: A survey of visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. 34(3), 334–352 (2004)CrossRefGoogle Scholar
  7. 7.
    Datla, S., Agarwal, A., Niyogi, R.: A novel algorithm for achieving a light-weight tracking system. In: International Conference on Contemporary, Computing, pp. 265–276 (2010)Google Scholar
  8. 8.
    Trucco, E., Plakas, K.: Video tracking: a concise survey. IEEE J. Oceanic Eng. 31(2), 520–529 (2006)CrossRefGoogle Scholar
  9. 9.
    Bouwmans, T.: Subspace learning for background modeling: a survey. Recent Pat. Comput. Sci. 2(3), 223–234 (2009)CrossRefGoogle Scholar
  10. 10.
    Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)zbMATHGoogle Scholar
  11. 11.
    Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13(4–5), 411–430 (2000)Google Scholar
  12. 12.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 13, 556–562 (2001)Google Scholar
  13. 13.
    Tang, F., Tao, H.: Fast linear discriminant analysis using binary bases. Int. Conf. Pattern Recogn. 28(16), 2209–2218 (2007)CrossRefGoogle Scholar
  14. 14.
    Hardoon, D.R., Szedmak, S.R., Taylor, J.R.S.: Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kemsley, E.K.: Discriminant Analysis and Class Modeling of Spectroscopic Data. Wiley, Chichester (1998)Google Scholar
  16. 16.
    Zheng, N., Xue, J.: Statistical Learning and Pattern Analysis for Image and Video Processing. Springer, New York (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Biswas, S., Sil, J., Sengupta, N.: Background modeling and implementation using discrete wavelet transform: a review. ICGST J. Graph. Vis. Image Process. 11(1), 29–42 (2011)Google Scholar
  18. 18.
    Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving object detection in spatial domain using background removal techniques—state-of-art. Recent Pat. Comput. Sci. 1(1), 32–34 (2008)Google Scholar
  19. 19.
    Xu, L., Qi, F., Jiang, R., Wu, G.: Shadow detection and removal in real images: A survey. Shanghai Jiao Tong University, Technical report (2006)Google Scholar
  20. 20.
    Bishop, C.M.: Pattern Recognition and Machine Learning Information Science and Statistics. Springer, New York (2006)Google Scholar
  21. 21.
    Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. In: International Conference on vision Systems, pp. 255–272 (1999)Google Scholar
  22. 22.
    Xu, Z., Shi, P., Gu, I.: An eigenbackground subtraction method using recursive error compensation, PCM, pp. 779–787 (2006)Google Scholar
  23. 23.
    Kawabata, S., Hiura, S., Sato, K.: Real-time detection of anomalous objects in dynamic scene. In: International Conference on Pattern Recognition, vol. 3, pp. 1171–1174 (2006)Google Scholar
  24. 24.
    Hall, P.M., Marshall, A.D., Martin, R.R.: Incremental eigen analysis for classification. In: British Machine Vision Conference, pp. 286–295 (1998)Google Scholar
  25. 25.
    Leonardis, A., Bischof, H.: Robust recognition using eigen images. Comput. Vis. Image Underst. 78(1), 99–118 (2000)CrossRefGoogle Scholar
  26. 26.
    Storer, M., Roth, P.M., Urschler, M., Bischof, H.: Fast-robust PCA. In: Proceedings of the 16th Scandinavian Conference on Image Analysis, pp. 430–439 (2009)Google Scholar
  27. 27.
    Li, Y., Xu, L., Morphett, J., Jacobs, R.: An integrated algorithm of incremental and robust PCA. IEEE International Conference on Image Processing, pp. 245–248 (2003)Google Scholar
  28. 28.
    Li, Y.: On incremental and robust subspace learning. Pattern Recogn. 37(7), 1509–1518 (2004)zbMATHCrossRefGoogle Scholar
  29. 29.
    Skocaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: International Conference on Computer Vision, pp. 1494–1501 (2003)Google Scholar
  30. 30.
    Skocaj, D., Leonardis, A.: Incremental and robust learning of subspace representations. Image Vis. Comput. 26(1), 27–38 (2008)CrossRefGoogle Scholar
  31. 31.
    Zhang, J., Zhuang, Y.: Adaptive weight selection for incremental eigenbackground modeling. IEEE International Conference on Multimedia and Expo, pp. 851–854 (2007)Google Scholar
  32. 32.
    La, X., Zhao, G., Meng, H.: A new method for selecting gradient weight in incremental eigenbackground modeling. In: International Conference on Information and Automation, pp. 801–805 (2009)Google Scholar
  33. 33.
    Wang, L., Wang, L., Zhuo, Q., Xiao, H., Wang, W.: Adaptive eigenbackground for dynamic background modeling. Intelligent Computing in Signal Processing and Pattern Recognition, Lecture Notes in Control and Information Sciences, vol. 345, pp. 670–675 (2006)Google Scholar
  34. 34.
    Wang, L., Wang, L., Wen, M., Zhuo, Q., Wang, W.: Background subtraction using incremental subspace learning. In: International Conference on Image Processing, pp. 45–48 (2007)Google Scholar
  35. 35.
    Zhang, J., Yang, Y., Zhu, C.: Robust foreground segmentation using subspace based background model. In: Asia-Pacific Conference on Information Processing, pp. 214–217 (2009)Google Scholar
  36. 36.
    Li, R., Chen, Y., Zhang, X.: Fast robust eigenbackground updating for foreground detection. In: International Conference on Image Processing, pp. 1833–1836 (2006)Google Scholar
  37. 37.
    Han, B., Jain, R.: Real-time subspace based background modeling using multi-channel data, \(8^{th}\) International Symposium on Visual, Computing, (2007) 162–172.Google Scholar
  38. 38.
    Zhao, Y., Gong, H., Lin, L., Jia, Y.: Spatio-temporal patches for night background modeling by subspace learning. In: International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  39. 39.
    Weng, J., Zhang, Y., Hwang, W.: Candid covariance free incremental principal components analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1034–1040 (2003)CrossRefGoogle Scholar
  40. 40.
    Wu, X., Wang, Y., Li, J.: Video background segmentation using adaptive background models. International Conference on Image Analysis and Processing, pp. 623–632 (2009)Google Scholar
  41. 41.
    Wu, X., Yang, L., Yang, C.: Real-time foreground segmentation based on a fused background model. International Conference on Computer and Automation Engineering, pp. 585–588 (2010)Google Scholar
  42. 42.
    Dong, Y., DeSouza, G.N.: Adaptive learning of multi-subspace for foreground detection under illumination changes. J. Comput. Vis. Image Underst. 115(1), 31–49 (2011)Google Scholar
  43. 43.
    Quivy, C., Kumazawa, I.: Background images generation based on the Nelder-Mead simplex algorithm using the eigenbackground model. In: International Conference on Image Analysis and Recognition, pp. 21–29 (2011)Google Scholar
  44. 44.
    Hu, Z., Wang, Y., Tian, Y., Huang, T.: Selective eigenbackgrounds method for background subtraction in crowed scenes. In: International Conference on Image Processing, pp. 3277–3280 (2011)Google Scholar
  45. 45.
    Kawanishi, Y., Mitsugami, I., Mukunoki, M., Minoh, M.: Background image generation preserving lighting condition of outdoor scenes. Procedia Soc. Behav. Sci. 2(1), 137–142 (2010)CrossRefGoogle Scholar
  46. 46.
    Candes, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(1), 1–37 (2009)MathSciNetGoogle Scholar
  47. 47.
    Wright, J., Peng, Y., Ma, Y., Ganesh, A., Roa, S.: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization, Neural Inf. Process. Syst. 2080–2088 (2009)Google Scholar
  48. 48.
    Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. Adv. Neural Inf. Pro. Syst. 23, 2496–2504 (2010)Google Scholar
  49. 49.
    Zhou, T., Tao, D.: GoDec: Randomized low-rank and sparse matrix decomposition in noisy case. In: International Conference on Machine Learning, pp. 33–40 (2011)Google Scholar
  50. 50.
    Ding, X., He, L., Carin, L.: Bayesian robust principal component analysis. IEEE Trans. Image Process. 20(12), 3419–3430 (2011)Google Scholar
  51. 51.
    Mateos, G., Giannakis, G.: Sparsity control for robust principal component analysis. International Conference on Signals Systems and Computers, pp. 1925–1929 (2010)Google Scholar
  52. 52.
    Torre, F.D.L., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vision 54(1–3), 183–209 (2003)Google Scholar
  53. 53.
    Mu, Y., Dong, J., Yuan, X., Yan, S.: Accelerated low-rank visual recovery by random projection. International Conference on Computer Vision, pp. 2609–2616 (2011)Google Scholar
  54. 54.
    Anderson, M., Ballard, J., Keutzer, K.: Communication-Avoiding QR decomposition for GPUs. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 48–58 (2011)Google Scholar
  55. 55.
    Qiu, C., Vaswani, N.: Real-time robust principal components pursuit. In: International Conference on Communication Control and Computing (2010)Google Scholar
  56. 56.
    Qiu, C., Vaswani, N.: Support predicted modified-CS for recursive robust principal components pursuit. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 668–672 (2011)Google Scholar
  57. 57.
    Zhao, C., Wang, X., Cham, W.: Background Subtraction via Robust Dictionary Learning, EURASIP J. Image Video Process. 2011, 1–12 (2011)Google Scholar
  58. 58.
    Yamazaki, M., Xu, G., Chen, Y.: Detection of moving objects by independent component analysis. In: 7th Asian Conference on Computer Vision, pp. 467–478 (2006)Google Scholar
  59. 59.
    Tsai, D., Lai, C.: Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process. 18(1), 158–167 (2009)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn. 34, 2067–2070 (2001)zbMATHCrossRefGoogle Scholar
  61. 61.
    Song, F., Zhang, D., Wang, J., Liu, H., Tao, Q.: A parameterized direct LDA and its application to face recognition. Neurocomputing 71, 191–196 (2007)CrossRefGoogle Scholar
  62. 62.
    Loog, M., Duin, R.P.W., Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23, 762–766 (2001)CrossRefGoogle Scholar
  63. 63.
    Zhou, D., Yang, X.: Face recognition using direct-weighted LDA. 8th Pacific Rim International Conference on Artificial Intelligence, pp. 760–768 (2004)Google Scholar
  64. 64.
    Chen, L.F., Liao, H.Y.M., Lin, J.C., Ko, M.T., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000)CrossRefGoogle Scholar
  65. 65.
    Liu, W., Wang, Y., Li, Z., Tan, T.: Null Space Approach of Fisher Discriminant Analysis for Face Recognition, Biometric Authentication. Springer, Berlin (2004)Google Scholar
  66. 66.
    Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 564–569 (2004)Google Scholar
  67. 67.
    Zheng, W., Tang, X.: Fast algorithm for updating the discriminant vectors of dual-space LDA. IEEE Trans. Inf. Forensics Secur. 4(3), 418–427 (2009)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Pima. I., Aladjem, M.: Regularized discriminant analysis for face recognition. Pattern Recogn. 37(9), 1945–1948 (2004)Google Scholar
  69. 69.
    Howland, P., Park, H.: Generalized discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 995–1006 (2004)CrossRefGoogle Scholar
  70. 70.
    Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 982–994 (2004)CrossRefGoogle Scholar
  71. 71.
    Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using LDA based algorithms. IEEE Trans. Neural Networks 14, 195–200 (2003)CrossRefGoogle Scholar
  72. 72.
    Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Boosting linear discriminant analysis for face recognition. In: Proceedings of the IEEE International Conference on Image Processing, pp. 657–660 (2003)Google Scholar
  73. 73.
    Yang, Q., Ding, Q.X.: Discriminant local feature analysis of facial images. In: IEEE International Conference on Image Processing, pp. 863–866 (2003)Google Scholar
  74. 74.
    Hwang, W., Kim, J., Kee, S.: Face recognition using local features based on two-layer block model. In: Proceedings of the International Association for Pattern Recognition Conference on Machine Vision Applications, pp. 104–107 (2005)Google Scholar
  75. 75.
    Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using kernel based Fisher discriminant analysis. In: 5th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 197–201 (2002)Google Scholar
  76. 76.
    Liu, Q., Tang, X., Lu, H., Ma, S.: Kernel scatter-difference based discriminant analysis for face recognition. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 419–422 (2004)Google Scholar
  77. 77.
    Li, M., Yuan, B.: 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recogn. Lett. 26, 527–532 (2005)CrossRefGoogle Scholar
  78. 78.
    Jing, X.Y., Tang, Y.Y., Zhang, D.: A fourier-LDA approach for image recognition. Pattern Recogn. 38, 453–457 (2005)zbMATHCrossRefGoogle Scholar
  79. 79.
    Pang, Y.W., Zhang, L., Li, M.J., Liu, Z.K., Ma, W.Y.: A novel Gabor-LDA based face recognition method. Adv. Multimedia Inf. Process. PCM 2004(3331), 352–358 (2004)CrossRefGoogle Scholar
  80. 80.
    Nhat, V.D.M., Lee, S.: Block LDA for Face Recognition, Computational Intelligence and Bioinspired Systems, vol. 3512, pp. 899–905. Springer, Berlin (2005)Google Scholar
  81. 81.
    Zhou, D., Yang, X.: Face recognition using enhanced Fisher linear discriminant model with facial combined feature. In: 8th Pacific Rim International Conference on Artifical Intelligence: Trends in Artificial Intelligence, vol. 3157, pp. 769–777, Springer, Berlin (2004)Google Scholar
  82. 82.
    Zhang, W.C., Shan, S.G., Gao, W., Chang, Y.Z., Cao, B.: Component based cascade linear discriminant analysis for face recognition. Adv. Biometric Pers. Authentication 3338, 288–295 (2004)CrossRefGoogle Scholar
  83. 83.
    Zhao, H., Yuen, P.C.: Incremental linear discriminant analysis for face recognition. IEEE Trans. Syst. Man Cybern. 38, 210–221 (2008)zbMATHCrossRefGoogle Scholar
  84. 84.
    Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. J. Inf. Process. Syst. 5(2), 41–68 (2009)Google Scholar
  85. 85.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)CrossRefGoogle Scholar
  86. 86.
    Fu, Z., Han, Y.: Centroid weighted Kalman filter for visual object tracking. J. Int. Meas. Confederation 45(4), 650–655 (2012)Google Scholar
  87. 87.
    Li X., Wang, K., Wang, W., Li X.: A multiple object tracking method using Kalman filter. In: IEEE International Conference on Information and Automation, pp. 1862–1866 (2010)Google Scholar
  88. 88.
    Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2001)CrossRefGoogle Scholar
  89. 89.
    Smith, A.F.M., Gelfand, A.E.: Bayesian statistics without tears: a sampling-resampling perspective. The Am. Statistician 46(2), 84–88 (1992)MathSciNetGoogle Scholar
  90. 90.
    Snoussi, H., Richard, C.: Monte Carlo tracking on the Riemannian manifold of multivariate normal distributions. In: IEEE Digital Signal Processing, pp. 280–285 (2009)Google Scholar
  91. 91.
    Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on Lie algebra. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 728–735 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations