Skip to main content

From the GCRS to the ITRS

  • Chapter
  • First Online:
Space-Time Reference Systems

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 2124 Accesses

Abstract

Polar motion means motion of the Earth’s rotation axis with respect to the Earth’s surface. The possibility for such a motion of the Earth’s rotation axis was first suggested by Leonhard Euler in 1765. It should reflect itself in elevation variations of the pole with a period of about 10 months. The observational verification by means of latitude variations, however, remained unsuccessful for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki S, Kinoshita H (1983) Note on the relation between the equinox and Guinot’s non-rotating origin. Celestial Mech Dyn Astron 29:335–360

    Article  ADS  MATH  Google Scholar 

  • Aoki S, Guinot B, Kaplan GH, Kinoshita H, McCarthy DD, Seidelmann PK (1982) The new definition of Universal time. A&A 105:359–361

    ADS  Google Scholar 

  • Artz T, Bockmann S, Nothnagel A, Steigenberger P (2010) Sub-diurnal variations in the Earth’s rotation from continuous VLBI campaigns. J Geophys Res 115:B05404, 16

    Google Scholar 

  • Bizouard C, Folgueira M, Souchay J (2000) Comparison of the short periodic rigid Earth nutation series. In: Dick S, McCarthy D, Luzum B (eds) Proceedings of IAU Colloquium 178, Publications of the Astron. Soc. Pac. Conf. Ser., vol 208, pp 613–617

    Google Scholar 

  • Bizouard C, Folgueira M, Souchay J (2001) Short periodic nutations: comparison between series and influence on polar motion. In: Capitaine N (ed) Proceedings of the Journées 2000 - Systèmes de Référence spatio-temporels, Paris, 2001, pp 260–265

    Google Scholar 

  • Bretagnon P (1982) Theory for the motion of all the planets – the VSOP82 solution. A&A 114:278

    ADS  MATH  Google Scholar 

  • Bretagnon P, Rocher P, Simon J-L (1997) Theory of the rotation of the rigid Earth. A&A 319(1):305–317

    ADS  Google Scholar 

  • Brzeziński A (2001) Diurnal and sub-diurnal terms in nutation: A simple theoretical model for a non-rigid Earth. In: Capitaine N (ed) Proceedings of the Journées 2000 - Systèmes de Référence spatio-temporels, Paris, 2001, pp 243–251

    Google Scholar 

  • Brzeziński A (2002) Circular 2, IAU Comission 19 WG “Precession–Nutation”

    Google Scholar 

  • Brzeziński A, Capitaine N (2003) Lunisolar perturbations in Earth rotation due to the triaxial figure of the Earth: Geophysical aspects. In: Capitaine N (ed) Proceedings of the Journées 2001 – Systèmes de Référence spatio-temporels, Paris, 2003, pp 51–58

    Google Scholar 

  • Capitaine N (1990) The Celestial pole coordinates. Celestial Mech Dyn Astron 48:127–143

    ADS  Google Scholar 

  • Capitaine N, Wallace PT (2006) High precision methods for locating the Celestial intermediate pole and origin. A&A 450:855–872

    Article  ADS  Google Scholar 

  • Capitaine N, Guinot B, Souchay J (1986) A non-rotating origin on the instantaneous equator: Definition, properties and use. Celestial Mech Dyn Astron 39:283–307

    Article  ADS  MATH  Google Scholar 

  • Capitaine N, Guinot B, McCarthy D (2000) Definition of the Celestial ephemeris Origin and of UT1 in the International Celestial Reference Frame. A&A 355:398–405

    ADS  Google Scholar 

  • Capitaine N, Chapront J, Lambert S, Wallace P (2003a) Expressions for the Celestial intermediate pole and Celestial ephemeris origin consistent with the IAU 2000A precession–nutation model. A&A 400:1145–1154

    Article  ADS  Google Scholar 

  • Capitaine N, Wallace P, McCarthy D (2003b) Expressions to implement the IAU-2000 definition of UT1. A&A 406:1135–1149

    Article  ADS  Google Scholar 

  • Capitaine N, Wallace P, Chapront J (2003c) Expressions for IAU-2000 precession quantities. A&A 412:567–586

    Article  ADS  Google Scholar 

  • Chapront-Touzé M, Chapront J (1983) The lunar ephemeris ELP 2000. A&A 124:50–62

    ADS  Google Scholar 

  • Chapront J, Chapront-Touzé M, Francou G (2002) An new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. A&A 387: 700–709

    Article  ADS  Google Scholar 

  • Defraigne P, Dehant V, Paquet P (1995) Link between the retrograde-prograde nutations and nutations in obliquity and longitude. Celestial Mech Dyn Astron 62:363–376

    Article  ADS  Google Scholar 

  • Escapa A, Getino J, Ferrándiz JM (2002) Indirect effect of the triaxiality in the Hamiltonian theory for the rigid Earth nutations. A&A 389(3):1047–1054

    Article  ADS  Google Scholar 

  • Escapa A, Getino J, Ferrándiz JM (2003) Influence of the triaxiality of the non-rigid Earth on the J2 forced nutations. In: Capitaine N (ed) Proceedings of the Journées 2001 - Systèmes de Référence spatio-temporels, Paris, 2003

    Google Scholar 

  • Fedorov EP (1963) Nutation and forced motion of the Earth’s pole. Pergamon Press, Oxford

    Google Scholar 

  • Folgueira M, Souchay J, Kinoshita H (1998a) Effects on the nutation of the non-zonal harmonics of third degree. Celestial Mech Dyn Astron 69(4):373–402

    Article  ADS  MATH  Google Scholar 

  • Folgueira M, Souchay J, Kinoshita H (1998b) Effects on the nutation of C4m and S4m harmonics. Celestial Mech Dyn Astron 70(3):147–157

    Article  ADS  MATH  Google Scholar 

  • Folgueira M, Bizouard C, Souchay J (2001) Diurnal and subdiurnal luni-solar nutations: Comparisons and effects. Celestial Mech Dyn Astron 81:191–217

    Article  ADS  MATH  Google Scholar 

  • Fukushima T (2001) Global rotation of the nonrotating origin. Astron J 122:482–486

    Article  ADS  Google Scholar 

  • Getino J, Ferrándiz JM, Escapa A (2001) Hamiltonian theory for the non-rigid Earth: Semi-diurnal terms. A&A 370(1):330–341

    Article  ADS  Google Scholar 

  • Guinot B (1979) Basic problems in the kinematics of the rotation of the Earth. In: McCarthy D, Pilkington J (eds) Time and the Earth’s rotation. Reidel Publishing Company, Dordrecht, pp 7–18

    Chapter  Google Scholar 

  • Herring T, Mathews P, Buffett B (2002) Modelling of nutation-precession: Very long baseline interferometry results. J Geophys Res 107:B4

    Article  Google Scholar 

  • Jeffreys H (1963) Preface to Fedorov (1963)

    Google Scholar 

  • Kinoshita H, Souchay J (1990) The theory of nutation for the rigid Earth model at the second order. Celestial Mech Dyn Astron 48:187

    Article  ADS  MATH  Google Scholar 

  • Lambert S, Bizouard C (2002) Positioning the terrestrial ephemeris origin in the international terrestrial frame. A&A 394:317–321

    Article  ADS  Google Scholar 

  • Lieske J, Lederle T, Fricke W, Morando B (1977) Expression for the precession quantities based upon the IAU (1976) system of astronomical constants. A&A 58:1–16

    ADS  Google Scholar 

  • Mathews P, Bretagnon P (2003) Polar motion equivalent to high frequency nutations for a nonrigid earth with anelastic mantle. A&A 400:1113–1128

    Article  ADS  Google Scholar 

  • Mathews P, Shapiro II (1992) Nutations of the Earth. Ann Rev Earth Planet Sci 20:469–500

    Article  ADS  Google Scholar 

  • Mathews P, Herring T, Buffet B (2002) Modelling of nutation-precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107:B4

    Article  Google Scholar 

  • McCarthy D, Petit G (2003) IERS Conventions 2003, IERS Technical Note No. 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, 2004

    Google Scholar 

  • McCarthy DD, Capitaine N (2002) Practical Consequences of Resolution B1.6 IAU2000 Precession-Nutation Model, Resolution B1.7 Definition of Celestial Intermediate Pole, Resolution B1.8 Definition and Use of Celestial and Terrestrial Ephemeris Origin, IERS Technical Note No. 28

    Google Scholar 

  • Nilsson T, Böhm J, Schuh H (2010) Sub-diurnal Earth rotation variations observed by VLBI. Artif Satellites 45(2):49–55. doi:10.2478/v10018-010-0005-8

    ADS  Google Scholar 

  • Oppolzer T (1886) Traité de détermination des orbites. Gauthiers-Villars, Paris

    MATH  Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS conventions, IERS Technical Note No. 36

    Google Scholar 

  • Ray R, Steinberg D, Chao B, Cartwright D (1994) Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides. Science 264:830–832

    Article  ADS  Google Scholar 

  • Roosbeek F (1999) Diurnal and sub-diurnal terms in RDAN97 series. Celestial Mech Dyn Astron 74(4):243–252

    Article  ADS  MATH  Google Scholar 

  • von Schuh H, Dill R, Greiner-Mai H, Kutterer H, Müller J, Nothnagel A, Richter B, Rothacher M, Schreiber U, Soffel M (2003) Erdrotation und globale dynamische Prozesse. Mitteilungen des Bundesamtes für Kartographie und Geodäsie (ISSN 1436–3445), Band 32, erarbeitet innerhalb des DFG-Forschungsvorhabens “Rotation der Erde”. Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. ISBN 3-89888-883-5, 2003, IV + 118 pp

    Google Scholar 

  • Schwiderski EW (1980) On charting global ocean tides. Rev Geophys Space Phys 18:243–268

    Article  ADS  Google Scholar 

  • Simon J-L, Bretagnon P, Chapront J, Chapront-Touzé M, Francou G, Laskar J (1994) Numerical expressions for precession formulae and mean elements for the Moon and Planets A&A 282:663–683

    ADS  Google Scholar 

  • Souchay J, Loysel B, Kinoshita H, Folgueira M (1999) Corrections and new developments in rigid Earth nutation theory, III. Final tables REN-2000 including crossed-nutation and spin-orbit coupling effects. A&A Suppl Ser 135:111–131

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soffel, M., Langhans, R. (2013). From the GCRS to the ITRS. In: Space-Time Reference Systems. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30226-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30226-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30225-1

  • Online ISBN: 978-3-642-30226-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics