Advertisement

Astrometry

  • Michael Soffel
  • Ralf Langhans
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

If a stellar position is measured from the Earth, it will vary because of refraction in the Earth’s atmosphere, parallax, aberration, proper motion and precession, nutation, and polar motion. Parallax and aberration require the selection of a reference point that usually is chosen as the barycenter of the solar system. For that reason, the computation of parallax and aberration requires solar system ephemerides.

Keywords

Proper Motion Zenith Distance Celestial Pole Reference Epoch Refraction Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Dravins D, Lindegren L, Madsen S (1999) Astrometric radial velocities, I. Non-spectroscopic methods for measuring stellar radial velocity. A&A 348:1040–1051Google Scholar
  2. Klioner S (2000) Relativity in modern astrometry and celestial mechanics – Overview. In: Johnston KJ, McCarthy DD, Luzum BJ, Kaplan GH (eds) Towards models and constants for sub-microarcsecond astrometry. Proceedings of the IAU Colloquium 180, Washington, DC, pp 265–274Google Scholar
  3. Klioner S (2003a) A practical relativistic model for microarcsecond astrometry in space. Astron J 125(3):1580–1597ADSCrossRefGoogle Scholar
  4. Klioner S (2003b) Proposal for the representation of the astrometric parameters, available from the Gaia document archive. http://www.rssd.esa.int/llink/livelink
  5. Klioner S, Kopeikin S (1992) Microarcsecond astrometry in Space: Relativistic effects and reduction of observations. Astron J 104(2):897–914ADSCrossRefGoogle Scholar
  6. Lieske J, Lederle T, Fricke W, Morando B (1977) Expression for the precession quantities based upon the IAU (1976) system of astronomical constants. A&A 58:1–16ADSGoogle Scholar
  7. Mueller II (1969) Spherical and practical astronomy (as applied to geodesy). Frederick Ungar Publishing Co., New YorkGoogle Scholar
  8. Saastamoinen J (1972) Introduction to the practical computation of astronomical refraction. Bull Geod 106:383CrossRefGoogle Scholar
  9. Seidelmann PK (ed) (1992) Explanetory supplement to the astronomical almanac. University Science Books, Mill ValleyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Soffel
    • 1
  • Ralf Langhans
    • 1
  1. 1.Institute for Planetary GeodesyDresden Technical University Lohrmann ObservatoryDresdenGermany

Personalised recommendations