Crowd Simulation Using Heat Conduction Model

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 169)


In this paper, we introduce a novel method for crowd simulation using heat conduction model. In our algorithm, individuals actions were affected by their neighbours in addition to the outside events and these affections were calculated grounded on head conduction theories. In order to improve the calculation speed, we adopted ADI method to generate the results. At last, we mapped these affections into their actions. Using this algorithm, we can simulate more realistic crowd behaviours.


crowd simulation heat conduction spectator behaviors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. ACM Transactions on Graphics 28(5), 122:1–122:8 (2009)Google Scholar
  2. 2.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics 25(3), 1160–1168 (2006)CrossRefGoogle Scholar
  3. 3.
    Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6), 246–274 (2007)CrossRefGoogle Scholar
  4. 4.
    Yang, L., Zhao, D., Li, J., Fang, T.: Simulation of the kin behavior in building occupant evacuation based on Cellular Automaton. Building and Environment 40(3), 411–415 (2005)CrossRefGoogle Scholar
  5. 5.
    Yu, Y., Song, W.: Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. Physical Review E 75(4), 046112 (2007)Google Scholar
  6. 6.
    Jiang, H., Xu, W., Mao, T., Li, C., Xia, S., Wang, Z.: Continuum crowd simulation in complex environments. Computers & Graphics 34(5), 537–544 (2010)CrossRefGoogle Scholar
  7. 7.
    van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple agents in crowded environments. In: I3D 2008 Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, pp. 139–147 (2008)Google Scholar
  8. 8.
    Thalmann, D.: Crowd simulation. Wiley Online Library (2007)Google Scholar
  9. 9.
    Gu, Q., Deng, Z.: Formation sketching: an approach to stylize groups in crowd simulation, pp. 1–8. Canadian Human-Computer Communications SocietyGoogle Scholar
  10. 10.
    Isobe, M., Helbing, D., Nagatani, T.: Experiment, theory, and simulation of the evacuation of a room without visibility. Physical Review E 69(6), 066132 (2004)Google Scholar
  11. 11.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
  12. 12.
    Parisi, D., Dorso, C.: Microscopic dynamics of pedestrian evacuation. Physica A: Statistical Mechanics and its Applications 354, 606–618 (2005)CrossRefGoogle Scholar
  13. 13.
    Braun, A., Bodmann, B.E.J., Musse, S.R.: Simulating virtual crowds in emergency situations. In: VRST 2005 Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 244–252 (2005)Google Scholar
  14. 14.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Virtual crowds: Methods, simulation, and control. Synthesis Lectures on Computer Graphics and Animation 3(1), 1–176 (2008)CrossRefGoogle Scholar
  15. 15.
    Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A: Statistical Mechanics and its Applications 324(3), 689–697 (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Pelechano, N., Malkawi, A.: Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches. Automation in Construction 17(4), 377–385 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina

Personalised recommendations