Co-occurring Cluster Mining for Damage Patterns Analysis of a Fuel Cell

  • Daiki Inaba
  • Ken-ichi Fukui
  • Kazuhisa Sato
  • Junichirou Mizusaki
  • Masayuki Numao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7302)


In this study, we research the mechanical correlations among components of solid oxide fuel cell (SOFC) by analyzing the co-occurrence of acoustic emission (AE) events which are caused by damage. Then we propose a novel method for mining patterns from the numerical data such as AE. The proposed method extracts patterns of two clusters considering co-occurrence between clusters and similarity within each cluster at the same time. In addition, we utilize the dendrogram obtained from hierarchical clustering for reduction of the search space. We applied the proposed method to AE data, and the damage patterns which represent the main mechanical correlations were extracted. We can acquire novel knowledge about damage mechanism of SOFC from the results.


clustering co-occurrence pattern damage evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krishnamurthy, R., Sheldon, B.W.: Stress due to oxygenpotential gradientsinnon-stoichiometricoxides. Journal of Acta Materialia 52, 1807–1822 (2004)CrossRefGoogle Scholar
  2. 2.
    Sato, K., Omura, H., Hashida, T., Yashiro, K., Kawada, T., Mizusaki, J., Yugami, H.: Tracking the onset of damage mechanism in ceria-based solid oxide fuel cells under simulated operating conditions. Journal of Testing and Evaluation 34(3), 246–250 (2006)Google Scholar
  3. 3.
    Rippengill, S., Worden, K., Holford, K.M., Pullin, R.: Automatic classification of acoustic emission patterns. Journal for Experimental Mechanics: Strain 39(1), 31–41 (2003)CrossRefGoogle Scholar
  4. 4.
    Godin, N., Huguet, S., Gaertner, R.: Influence of hydrolytic ageing on the acoustic emission signatures of damage mechanisms occurring during tensile tests on a polyester composite: Application of a Kohonen’s map. Composite Structures 72(1), 79–85 (2006)CrossRefGoogle Scholar
  5. 5.
    Fukui, K., Akasaki, S., Sato, K., Mizusaki, J., Moriyama, K., Kurihara, S., Numao, M.: Visualization of Damage Progress in Solid Oxide Fuel Cells. Journal of Environment and Engineering 6(3), 499–511 (2011)CrossRefGoogle Scholar
  6. 6.
    Kitagawa, T., Fukui, K.-i., Sato, K., Mizusaki, J., Numao, M.: Extraction of Essential Events with Application to Damage Evaluation on Fuel Cells. In: Hatzilygeroudis, I., Prentzas, J. (eds.) Combinations of Intelligent Methods and Applications. SIST, vol. 8, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of 20th International Conference on Very Large Databases (ICVLD), pp. 487–499 (1994)Google Scholar
  8. 8.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. of the 1998 ACM SIGMOD International Conference on Management of Data (ICMD), pp. 94–105 (1998)Google Scholar
  9. 9.
    Mitsunaga, Y., Washio, T., Motoda, H.: Mining Quantitative Frequent Itemsets Using Adaptive Density-Based Subspace Clustering. In: Proc. of the 5th International Conference on Data Mining (ICDM), pp. 793–796 (2005)Google Scholar
  10. 10.
    Honda, R., Konishi, O.: Temporal Rule Discovery for Time-Series Satellite Images and Integration with RDB. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 204–215. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Yairi, T., Ishihama, N., Kato, Y., Hori, K., Nakasuka, S.: Anomaly Detection Method For Spacecrafts Based on Association Rule Mining. Journal of Space Technology and Science 17(1), 1–10 (2001)Google Scholar
  12. 12.
    Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proc. the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 91–101 (2002)Google Scholar
  13. 13.
    Kohonen, T.: Self-organizing maps. Springer (1995)Google Scholar
  14. 14.
    Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch Kernel SOM and Related Laplacian Method for Social Network Analysis. Neurocomputing 71, 1257–1273 (2008)CrossRefGoogle Scholar
  15. 15.
    Ishigaki, T., Higuchi, T.: Dynamic Spectrum Classification by Kernel Classifiers with Divergence-Based Kernels and its Applications to Acoustic Signals. International Journal of Knowledge Engineering and Soft Data Paradigms 1(2), 173–192 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daiki Inaba
    • 1
  • Ken-ichi Fukui
    • 2
  • Kazuhisa Sato
    • 3
  • Junichirou Mizusaki
    • 4
  • Masayuki Numao
    • 2
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityJapan
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan
  3. 3.Graduate School of EngineeringTohoku UniversityJapan
  4. 4.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversityJapan

Personalised recommendations