Advertisement

RadialViz: An Orientation-Free Frequent Pattern Visualizer

  • Carson Kai-Sang Leung
  • Fan Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7302)

Abstract

Frequent pattern mining algorithms aim to find sets of frequently co-occurring items. Visual representation of the mining results is more comprehensible to users than the traditional long textual list of frequent patterns. Existing visualizers mostly show frequent patterns as graphs in a two-dimensional space with (x,y)-coordinates. Nowadays, in a collaborative environment, it is not uncommon for users to have face-to-face meetings when they show the graphs visualizing frequent patterns. In these situations, the viewing orientation of the graphs plays an important role as different orientations positively or negatively impact the graph legibility. A legible right-side-up graph to one user may become an illegible upside-down graph towards another user. In this paper, we propose a visualizer that uses a radial layout—which is orientation free—to show frequent patterns. Having such a visualizer is beneficial in the collaborative environment.

Keywords

Visual data mining association analysis frequent itemsets human-machine interaction pattern discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, ch. 6. AAAI/MIT Press (1995)Google Scholar
  2. 2.
    Alallah, F., Jin, D., Irani, P.: OA-graphs: orientation agnostic graphs for improving the legibility of charts on horizontal displays. In: ITS 2010, pp. 211–220 (2010)Google Scholar
  3. 3.
    Ankerst, M., Elsen, C., Ester, M., Kriegel, H.-P.: Visual classification: an interactive approach to decision tree construction. In: ACM KDD 1999, pp. 392–396 (1999)Google Scholar
  4. 4.
    Berchtold, S., Jagadish, H.V., Ross, K.A.: Independence diagrams: a technique for visual data mining. In: KDD 1998, pp. 139–143 (1998)Google Scholar
  5. 5.
    Blanchard, J., Guillet, F., Briand, H.: Interactive visual exploration of association rules with rule-focusing methodology. KAIS 13(1), 43–75 (2007)Google Scholar
  6. 6.
    Carmichael, C.L., Hayduk, Y., Leung, C.K.-S.: Visually contrast two collections of frequent patterns. In: IEEE ICDM Workshops 2011, pp. 1128–1135 (2011)Google Scholar
  7. 7.
    Di Caro, L., Frias-Martinez, V., Frias-Martinez, E.: Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part II. LNCS (LNAI), vol. 6119, pp. 125–132. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Grinstein, G., Plaisant, C., Laskowski, S., O’Connell, T., Scholtz, J., Whiting, M.: VAST 2008 challenge: introducing mini-challenges. In: IEEE VAST 2008, pp. 195–196 (2008)Google Scholar
  9. 9.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)Google Scholar
  10. 10.
    Hassan, M. R., Ramamohanarao, K., Karmakar, C., Hossain, M.M., Bailey, J.: A Novel Scalable Multi-class ROC for Effective Visualization and Computation. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS (LNAI), vol. 6118, pp. 107–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Hofmann, H., Siebes, A.P.J.M., Wilhelm, A.F.X.: Visualizing association rules with interactive mosaic plots. In: ACM KDD 2000, pp. 227–235 (2000)Google Scholar
  12. 12.
    Keim, D.A., Kriegel, H.-P.: Visualization techniques for mining large databases: a comparison. IEEE TKDE 8(6), 923–938 (1996)Google Scholar
  13. 13.
    Keim, D.A., Schneidewind, J., Sips, M.: FP-Viz: visual frequent pattern mining. IEEE InfoVis 2005 Poster (2005)Google Scholar
  14. 14.
    Koren, Y., Harel, D.: A two-way visualization method for clustered data. In: ACM KDD 2003, pp. 589–594 (2003)Google Scholar
  15. 15.
    Leung, C.K.-S., Carmichael, C.L.: FpVAT: a visual analytic tool for supporting frequent pattern mining. ACM SIGKDD Explorations 11(2), 39–48 (2009)CrossRefGoogle Scholar
  16. 16.
    Leung, C.K.-S., Irani, P.P., Carmichael, C.L.: FIsViz: a frequent itemset visualizer. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 644–652. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Leung, C.K.-S., Irani, P.P., Carmichael, C.L.: WiFIsViz: effective visualization of frequent itemsets. In: IEEE ICDM 2008, pp. 875–880 (2008)Google Scholar
  18. 18.
    Leung, C.K.-S., Jiang, F., Irani, P.P.: FpMapViz: a space-filling visualization for frequent patterns. In: IEEE ICDM Workshops 2011, pp. 804–811 (2011)Google Scholar
  19. 19.
    Munzner, T., Kong, Q., Ng, R.T., Lee, J., Klawe, J., Radulovic, D., Leung, C.K.: Visual mining of power sets with large alphabets. Technical report TR-2005-25, UBC, Canada (2005)Google Scholar
  20. 20.
    Stasko, J., Zhang, E.: Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations. In: IEEE InfoVis 2000, pp. 57–65 (2000)Google Scholar
  21. 21.
    Stolte, C., Tang, D., Hanrahan, P.: Query, analysis, and visualization of hierarchically structured data using Polaris. In: ACM KDD 2002, pp. 112–122 (2002)Google Scholar
  22. 22.
    Tobiasz, M., Isenberg, P., Carpendale, S.: Lark: coordinating co-located collaboration with information visualization. IEEE TVCG 15(6), 1065–1072 (2009)Google Scholar
  23. 23.
    Wong, P.C., Cowley, W., Foote, H., Jurrus, E., Thomas, J.: Visualizing sequential patterns for text mining. In: IEEE InfoVis 2000, pp. 105–111 (2000)Google Scholar
  24. 24.
    Yang, L.: Visualizing Frequent Itemsets, Association Rules, and Sequential Patterns in Parallel Coordinates. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003, Part I. LNCS, vol. 2667, pp. 21–30. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Yang, L.: Pruning and visualizing generalized association rules in parallel coordinates. IEEE TKDE 17(1), 60–70 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carson Kai-Sang Leung
    • 1
  • Fan Jiang
    • 1
  1. 1.Department of Computer ScienceUniversity of ManitobaCanada

Personalised recommendations