Advertisement

Domain Transfer Dimensionality Reduction via Discriminant Kernel Learning

  • Ming Zeng
  • Jiangtao Ren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7302)

Abstract

Kernel discriminant analysis (KDA) is a popular technique for discriminative dimensionality reduction in data analysis. But, when a limited number of labeled data is available, it is often hard to extract the required low dimensional representation from a high dimensional feature space. Thus, one expects to improve the performance with the labeled data in other domains. In this paper, we propose a method, referred to as the domain transfer discriminant kernel learning (DTDKL), to find the optimal kernel by using the other labeled data from out-of-domain distribution to carry out discriminant dimensionality reduction. Our method learns a kernel function and discriminative projection by maximizing the Fisher discriminant distance and minimizing the mismatch between the in-domain and out-of-domain distributions simultaneously, by which we may get a better feature space for discriminative dimensionality reduction with cross-domain.

Keywords

Discriminant Kernel Learning Dimensionality Reduction Transfer Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.: Fisher discriminant analysis with kernels. In: NNSP Workshop, pp. 41–48 (1999)Google Scholar
  2. 2.
    Wang, Z., Song, Y., Zhang, C.: Transferred Dimensionality Reduction. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 550–565. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Pan, S., Kwok, J., Yang, Q.: Transfer learning via dimensionality reduction. In: AI, vol. 2, pp. 677–682 (2008)Google Scholar
  4. 4.
    Si, S., Tao, D., Chan, K.: Evolutionary cross-domain discriminative hessian eigenmaps. IEEE Transactions on Image Processing 19(4), 1075–1086 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)CrossRefGoogle Scholar
  6. 6.
    Fukunaga, K.: Introduction to statistical pattern recognition. Academic Pr. (1990)Google Scholar
  7. 7.
    Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12(10), 2385–2404 (2000)CrossRefGoogle Scholar
  8. 8.
    Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel matrix with semidefinite programming. The Journal of Machine Learning Research 5, 27–72 (2004)zbMATHGoogle Scholar
  9. 9.
    Kim, S.J., Magnani, A., Boyd, S.: Optimal kernel selection in kernel fisher discriminant analysis. In: ICML, pp. 465–472 (2006)Google Scholar
  10. 10.
    Ye, J., Ji, S., Chen, J.: Multi-class discriminant kernel learning via convex programming. The Journal of Machine Learning Research 9, 719–758 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H., Schölkopf, B., Smola, A.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)Google Scholar
  12. 12.
    Cristianini, N., Shawe-Taylor, J.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  13. 13.
    Cai, D., He, X., Han, J.: Semi-supervised discriminant analysis. In: ICCV, pp. 1–7 (2007)Google Scholar
  14. 14.
    Asuncioin, A., Newman, D.: Uci machine learning repository (2007), http://www.ics.uci.edu/mlearn/MLRepository.html
  15. 15.
    Davidov, D., Gabrilovich, E., Markovitch, S.: Parameterized generation of labeled datasets for text categorization based on a hierarchical directory. In: SIGIR, pp. 250–257 (2004)Google Scholar
  16. 16.
    Zhong, E., Fan, W., Peng, J., Zhang, K., Ren, J., Turaga, D., Verscheure, O.: Cross domain distribution adaptation via kernel mapping. In: SIGKDD, pp. 1027–1036 (2009)Google Scholar
  17. 17.
    Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: ICML, pp. 193–200 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ming Zeng
    • 1
  • Jiangtao Ren
    • 1
  1. 1.Sun Yat-Sen UniversityGuangzhouChina

Personalised recommendations