In this paper, we study a new problem of instant social graph search, which aims to find a sub graph that closely connects two and more persons in a social network. This is a natural requirement in our real daily life, such as “Who can be my referrals for applying for a job position?”. In this paper, we formally define the problem and present a series of approximate algorithms to solve this problem: Path, Influence, and Diversity. To evaluate the social graph search results, we have developed two prototype systems, which are online available and have attracted thousands of users. In terms of both user’s viewing time and the number of user clicks, we demonstrate that the three algorithms can significantly outperform (+34.56%-+131.37%) the baseline algorithm.


Social Network Online Social Network Baseline Algorithm Diversity Algorithm Social Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM 2009, pp. 5–14 (2009)Google Scholar
  2. 2.
    Aleman-Meza, B., Nagarajan, M., Ramakrishnan, C., Ding, L., Kolari, P., Sheth, A.P., Arpinar, I.B., Joshi, A., Finin, T.: Semantic analytics on social networks: experiences in addressing the problem of conflict of interest detection. In: WWW 2006, pp. 407–416 (2006)Google Scholar
  3. 3.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: KDD 2009, pp. 199–207 (2009)Google Scholar
  4. 4.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Faloutsos, C., McCurley, K.S., Tomkins, A.: Fast discovery of connection subgraphs. In: KDD 2004, pp. 118–127 (2004)Google Scholar
  6. 6.
    Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW 2009, pp. 381–390. ACM, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences 102(46), 16569–16572 (2005)CrossRefGoogle Scholar
  8. 8.
    Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. In: SC Conference, p. 35 (1996)Google Scholar
  9. 9.
    Kautz, H., Selman, B., Shah, M.: Referral web: Combining social networks and collaborative filtering. Communications of the ACM 40(3), 63–65 (1997)CrossRefGoogle Scholar
  10. 10.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD 2003, pp. 137–146 (2003)Google Scholar
  11. 11.
    Koren, Y., North, S.C., Volinsky, C.: Measuring and extracting proximity graphs in networks. ACM Trans. Knowl. Discov. Data 1 (December 2007)Google Scholar
  12. 12.
    Landauer, T.K.: Behavioural research methods in human-computer interaction. In: Helander, M., Landauer, T.K., Prabhu, P. (eds.) Handbook of Human-Computer Interaction (1997)Google Scholar
  13. 13.
    Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)Google Scholar
  14. 14.
    Ramakrishnan, C., Milnor, W.H., Perry, M., Sheth, A.P.: Discovering informative connection subgraphs in multi-relational graphs. SIGKDD Explor. Newsl. 7, 56–63 (2005)CrossRefGoogle Scholar
  15. 15.
    Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD 2010, pp. 939–948 (2010)Google Scholar
  16. 16.
    Tang, J., Lou, T., Kleinberg, J.: Inferring social ties across heterogenous networks. In: WSDM 2012 (2012)Google Scholar
  17. 17.
    Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD 2009, pp. 807–816 (2009)Google Scholar
  18. 18.
    Tang, J., Wu, S., Gao, B., Wan, Y.: Topic-level social network search. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 769–772 (2011)Google Scholar
  19. 19.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and mining of academic social networks. In: KDD 2008, pp. 990–998 (2008)Google Scholar
  20. 20.
    Tang, W., Zhuang, H., Tang, J.: Learning to Infer Social Ties in Large Networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 381–397. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Tong, H., He, J., Wen, Z., Konuru, R., Lin, C.-Y.: Diversified ranking on large graphs: an optimization viewpoint. In: KDD 2011, pp. 1028–1036 (2011)Google Scholar
  22. 22.
    Wang, C., Han, J., Jia, Y., Tang, J., Zhang, D., Yu, Y., Guo, J.: Mining advisor-advisee relationships from research publication networks. In: KDD 2010, pp. 203–212 (2010)Google Scholar
  23. 23.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW 2005, pp. 22–32. ACM, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sen Wu
    • 1
  • Jie Tang
    • 1
  • Bo Gao
    • 1
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations